
Should I Stale or Should I Close? An Analysis of a
Bot that Closes Abandoned Issues and Pull Requests

Mairieli Wessel
University of Sao Paulo

Sao Paulo, SP, Brazil
mairieli@ime.usp.br

Igor Steinmacher
Northern Arizona University

Flagstaff, AZ, USA
igor.steinmacher@nau.edu

Igor Wiese
Fed. Univ. of Technology, Parana

Campo Mourao, PR, Brazil
igor@utfpr.edu.br

Marco A. Gerosa
Northern Arizona University

Flagstaff, AZ, USA
marco.gerosa@nau.edu

Abstract—Bots support several software engineering activities.
On GitHub, projects use bots to automate predefined and
repetitive tasks related to issues and pull requests. Our research
investigates the adoption of the stale bot, which helps maintainers
triaging abandoned issues and pull requests. We analyzed the
bots’ configuration settings and their modifications over time.
These settings define the time for tagging issues and pull request
as stale and closing them. We collected data from 765 OSS
projects hosted on GitHub. Our results indicate that most of
the studied projects made no more than three modifications in
the configurations file, issues tagged as bug reports are exempt
from being considered stale, while the same occurs with pull
requests that need some input to be processed.

Index Terms—bots, open source software, abandoned issues

I. INTRODUCTION

Bots are software agents that integrate their work with
humans’ tasks [1], serving as conduits between users and
services [2] and performing complex tasks that cannot be en-
tirely automated [3]. Bots support several technical and social
software engineering activities [4], such as communication and
decision-making [2].

Open Source Software (OSS) projects hosted on GitHub
have been adopting bots to automate a variety of predefined
tasks on issues and pull requests, such as ensuring license
agreement signing, reporting continuous integration failures,
triaging issues, reviewing code and pull requests, and assigning
reviewers [5]. More specifically, some studies on bots focus
on mentoring reviewers on pull requests [6] and helping
developers to detect early duplicate development effort [7].

Triaging stale or dormant issues and pull requests is an
interesting use of bots in GitHub. To help on this task, GitHub
created the stale bot.1 This bot is described as a GitHub App
that help integrators and maintainers by automatically labeling
and closing abandoned issues and pull requests. Any project
hosted on GitHub may leverage the features provided by this
bot, and change its settings to adapt the characteristics for each
project. It is possible to change settings such as the days until
an issue or pull request becomes stale, the days until close
stale issues or pull requests, the label to mark stale issues,
and labels to exempt an issue or pull request.

Maintainers may leverage the stale bot to help cleaning and
keeping the issue tracker and pull requests up-to-date. This
cleaning is important once one of the common reasons to
close a pull request is when it is no longer relevant, as the
project has progressed [8]. Thus, dormant pull requests [9]
need to be further reviewed and closed if necessary. As for
issues, one may close them when they are fixed, or not
considered important for the project. However, there are cases

1https://probot.github.io/apps/stale/

when issues and pull requests become dormant, staying open
for a long period, which may lead to different kinds of
problems. For example, the lack of feedback in pull-requests
may discourage further contributions [10]; while issues left
open for a long time may become outdated and, ultimately,
confuse newcomers [11].

In this paper, we investigated OSS projects that adopted the
stale bot. Specifically, we looked into the bots’ configuration
settings defined by each project, and we analyzed how these
projects adapt and maintain the bot over time. To do it, we
collected data from 765 OSS projects that adopted the stale
bot. By analyzing our data, we found that issues tagged as a
bug report and pull requests that need input from the developer,
review or something else to be processed, are exempt from
being considered abandoned or stale. Our results also indicate
that the use of the stale bot does not require too much effort
since in approximately 83% of the projects the configuration
file was modified three times or less.

II. MOTIVATION SCENARIO

Ada, who works in an open source project that receives
many daily contributions, spends considerable time to main-
tain/triage the issues and review contributions. She wants to
be more proactive by focusing on issues and pull requests that
are affecting the projects and the developers, but the amount
of open pull requests make it hard to manage. One developer
suggested to try out stale bot and explained how it works:

• After a period of inactivity predefined by maintainers, a
label is added to mark an issue/pull request as stale.

• When an issue/pull request is marked as stale, optionally
a comment is posted to notify the stakeholders.

• The issue/pull request is automatically closed if no more
activity occurs. If the issue/pull request is updated, then
the stale label is removed.

Considering this suggestion, Ada is interested in adopting
stale bot but worries that it might seem hostile or offensive for
contributors, especially for newcomers. However, they figure
out that some bot settings can be modified to adapt the stale
characteristics for the project, including changing the time
interval to consider issues and pull requests stale, and the
messages that the bot send. Thus, the maintainers now believe
that, by adjusting the settings, it is possible to decrease the
chances of labeling and closing issues and pull requests that
had recent activity, and that this can be used to make them
aware of issues and pull requests that need their attention.
Ultimately, this may help them and newcomers.

III. METHOD

This study aims to explore how OSS projects on GitHub
are using the stale bot, answering the following research
questions:

RQ1. What are the characteristics of stale issues and pull
requests?

We aimed to investigate the configuration settings of stale
bot defined by maintainers, such as days until stale, to under-
stand which characteristics commonly define both issues and
pull requests that are considered stale in OSS projects.

RQ2. How stable is the bot configuration for a project?

In this research question, we aim to understand how much
effort is required to use and maintain the bot on issues and
pull requests of OSS projects hosted on GitHub. To do it,
we analyzed the number and frequency of changes in the bot
configuration file.

A. Project Selection
We selected OSS projects hosted on GitHub that adopted

the stale bot. To identify these projects, we verify whether
they had a required configuration file (.github/stale.yml). Using
GitHub’s public dataset on Google BigQuery,2 we used a
query to search for public projects that contained this config-
uration file. We started with 1, 484 projects. To further refine
our dataset, we decided to exclude forks and deleted projects.
As a result, we obtained 770 projects. For each project, we
used the PyDriller [12] to collect the data of commits that
modified the .github/stale.yml file.

As mentioned before, a .github/stale.yml file is required in
the default branch to enable the bot on the repository. In this
file, the project maintainers may change some default settings:

• daysUntilStale (defaults to 60 days). Number of
days of inactivity before an issue or pull request becomes
stale.

• daysUntilClose (defaults to 7 days). Number of
days of inactivity before an issue or pull request with the
stale label is closed. If disabled, issues still need to be
manually closed.

• staleLabel (defaults to “wontfix”). Label to use
when marking the issue or pull request as stale. A project
can have only one stale label.

• exemptLabels (defaults to “pinned” and “secu-
rity”). Issues or pull requests with these labels are
never considered stale. A project could have an arbitrary
number of exempt labels.

• only (defaults to “issues” and “pulls”). Restricts bot
action to “issues” or “pulls” only. If empty, the bot work
on both “issues” and “pulls”.

Besides the settings presented above, it is possible to specify
configuration settings that are specific to just “issues” or
“pulls.”

To extract these settings from the source code of configura-
tion file, we generated a parser in Python. Thus, we discarded
five selected projects that did not follow the YML format
on the .github/stale.yml file. At the end of this process, we
obtained 765 projects.

2https://bigquery.cloud.google.com/dataset/bigquery-public-data:
github repos

B. Data analysis
We analyzed bot configuration settings of 765 software

projects, investigating the days until stale, days until close,
stale label, and exempt labels to find which characteristics
commonly define both issues and pull requests that are con-
sidered stale in OSS projects (RQ1).

As previously explained in Section III-A, it is allowed
override the configuration settings specific to “issues,” “pull
requests,” or both (we called it “all”). We conduct all analyzes
by distinguishing these categories of settings, examining both
frequency and type of modifications made in the configuration
file (RQ2).

For more details about the projects used and replication pur-
poses, we made our data and source code publicly available.3

IV. RESULTS

In the following, we present the results according to the
research questions.

A. RQ1. What are the characteristics of stale issues and pull
requests?

To characterize stale issues and pull requests, we investi-
gated the stale bot configuration file for each selected project.
The first analysis we conducted aimed to understand if the
bot was being used to identify stale issues or pull requests.
We found 75 projects (' 9.8%) that adopted the bot only for
issues, 19 (' 2.5%) that adopted only for pull requests, and
671 (' 87.7%) that adopted the stale bot for both issues and
pull requests. By investigating these 671 projects, we noticed
that most of them maintained a common setting for issues and
pull requests, and 12.2% (82 projects) specified the different
settings for “issues” and “pull requests.”

After analyzing the only setting and specific configura-
tions, we looked into the settings that define the number of
days until the bot considers an issue or pull request stale.
Figure 1 presents the distribution of daysUntilStale
setting across our sample. Our data show that this distribution
is different according to the target set for the bot (issues,
pull requests, or both (all)). For the issues settings Q1 = 30,
median = 30, Q3 = 84; for the pull requests settings Q1 =
14, median = 14, Q3 = 30 and for both Q1 = 30, median =
60, Q3 = 60). Pull requests have been set to become stale
in fewer days than issues. We also noticed some extreme
cases, for example, we found eight projects that defined the
daysUntilStale as more than 36, 000 days. Therefore, we
manually investigate each of these projects and then perceived
they did not understand the workflow of the bot.

As we did for daysUntilStale setting, we looked into
the settings that define the number of days until the bot closes
an issue or pull request marked as stale. Among the analyzed
projects, 77 had this value set to false at the moment
of our collection (disabling the feature that makes the bot
automatically close the issues and pull requests). Figure 2
presents the distribution of daysUntilClose setting for
the 688 (' 90%) projects that kept the closing feature active.
For the issues settings Q1=7, median=7, Q3=40; for the pull
requests settings Q1=7, median=7, Q3=14 and for all settings
Q1=7, median=7, Q3=7. By looking at Figure 2, we noticed
that the configurations that included both issues and pull
requests (all), kept daysUntilClose with the default value
(excluding outliers, not displayed in the figure).

3https://github.com/mairieli/botSE-2019

all issues pulls
0

20

40

60

80

100

Da
ys

 U
nt

il
St

al
e

Fig. 1. Distribution of days until stale

all issues pulls

0

10

20

30

40

50

60

Da
ys

 U
nt

il
Cl

os
e

Fig. 2. Distribution of days until close

Analyzing the staleLabel setting, we found 16 different
labels applied by the projects. By analyzing them, we found
that four of them corresponded to more than 90% of all the
labels adopted. Table I presents the frequency of these 4 stale
labels. Interestingly, the default label “wontfix” is not the most
commonly used. We hypothesize that projects changed it since
“wontfix” is offered as a default label when one creates a new
repository in GitHub. Thus, projects usually make use of this
label and do not want to have it used with more than one
meaning. Therefore, the project maintainers adopt other labels,
preferring using “stale,” as it is possible to observe in the table.

We also analyzed the labels assigned to issues and pull
requests that maintainers want never from being considered
stale. To do so, we manually inspected the labels defined under
exemptLabels setting. Table II shows the most recurrent
exempt types of labels used (it is worth mentioning that we
further classified the labels in more generic categories).

Regarding the issues’ settings, we noticed that the distribu-
tion of labels used for issues and pull requests are different.
Interestingly, the most frequently exempt label category for
issues is that representing bug reports (usually labeled as

TABLE I
FREQUENCY OF MOST COMMON STALE LABELS

Stale Label Freq.
in Issues (%)

Freq. in
Pulls (%)

Freq. in
All (%)

stale 125 (79.6%) 26 (25.7%) 303 (51.4%)
wontfix 25 (15.9%) 10 (9.9%) 245 (41.5%)
abandoned - 60 (59.4%) 2 (0.3%)
inactive 3 (1.9%) 3 (2.9%) 12 (2%)

* Gray rows represent the default settings.

“bug”), appearing in 67.6% of the projects. Enhancements
closely follow this label. Apart from the most common ones,
one interesting finding is that a non-negligible number of
projects set the issues identifying newcomer-friendly tasks as
exempt from staling. These issues are usually low-hanging
fruits and may benefit the joining process of newcomers, so
they will not be touched by more active members.

For the pull requests’ settings, the most common label
categories represent the contributions that need input from the
developer (“waiting for CLA”), review (“needs review”), or
something else (“on hold”) to be processed.

TABLE II
FREQUENCY OF MOST COMMON EXEMPT LABELS

Exempt labels Freq. in
Issues (%)

Freq. in
Pulls (%)

Freq. in
All (%)

security 61 (41.4%) 27 (26.7%) 360 (61.1%)
pinned 43 (27.3%) 26 (25.7%) 371 (62.9%)
bug 106 (67.6%) 5 (4.9%) 104 (17.6%)
enhancement 95 (60.5%) 3 (2.9%) 73 (12.3%)
on hold 60 (38.2%) 59 (58.4%) -
newcomer 17 (10.8%) 6 (5.9%) 72 (12.3%)
maybe later 12 (7.6%) 8 (7.9%) 65 (11%)
documentation 69 (43.9%) - -
needs review - 59 (58.4%) 20 (3.3%)
accepted 3 (1.9%) - 60 (10.1%)
proposal 61 (38.8%) 1 (0.9%) 1 (0.1%)
waiting for CLA pass - 59 (58.4%) -
tests 59 (37.5%) - -
feature 7 (4.4%) 1 (0.9%) 45 (7.6%)
work in progress 4 (2.5%) 1 (0.9%) 36 (6.1%)
discussion 7 (4.4%) - 20 (3.3%)
blocked 9 (5.7%) 1 (0.9%) 14 (2.3%)
under consideration - - 23 (3.9%)
no stale 5 (3.1%) 2 (1.9%) 13 (2.2%)

* Gray rows represent the default settings.

RQ1. Pull requests have been defined to become stale
in fewer days than issues. Issues tagged as bug report is
exempt from being considered stale, while the same occurs
with pull requests that need some input to be processed.

B. RQ2. How stable is the bot configuration for a project?

After adding the first version of the configuration file to the
project, the maintainer may update the settings until reach the
ideal configuration for the project. To understand this process,
we analyzed the history of changes in the configuration file
for all the projects. We noticed that some projects take some
time changing it until they reach the ideal configuration. Thus,
we considered that the number of modifications is a proxy to
the effort required to use the bot in a project.

From this analysis, we observed that 453 (' 59.2%)
projects that only added the configuration file and made no
further modifications. Interestingly, 49 (' 6.4%) projects kept
the configuration file exactly as provided in the bot page,4
maintaining the complete default settings.

In Figure 3, we present the distribution of the number of
modifications in the stale.yml file per project. We considered
only the 312 projects that changed the configuration file at
least once after the addition, and we found that most projects
(259, or ' 83%) have modified the file between one and three
times after its initial inclusion in the project.

0 10 20 30 40 50 60
Number of modifications

Fig. 3. Distribution of the number of modifications in stale.yml file

Figure 3 also shows some outliers with 7, 8, 9, 16 and 59
modifications. The extreme case happened in the SaltStack.5
project Figure 4 shows the timeline of modifications for this
project. The configuration file was modified by 59 commits
from May 12, 2017, to December 14, 2017. By analyzing the
changes, we could observe that all of them were changes in
the daysUntilStale setting, decreasing it by 30, 25, 15,
and 10 days. All modifications followed the same structure in
the commit message: “Reduce the number of days an issue
is stale by X”. We could notice that this gradual reduction
was to avoid overloading the project with a lot of stale issues
and pull requests needed to be manually inspected in a short
period. Until December 2018, more than 3, 500 issues were
closed by the bot in this project.

20
17

-05

20
17

-07

20
17

-09

20
17

-11

20
18

-01

20
18

-03

20
18

-05

20
18

-07

20
18

-09

20
18

-11

Commit date

600

800

1000

1200

Da
ys

 u
nt

il
st

al
e

Fig. 4. The progress of days until stale

4https://github.com/probot/stale#usage
5https://github.com/saltstack/salt

Looking into a pull request6 of the atom project, we found
another evidence that projects have defined higher values
to daysUntilStale setting and then decreased until the
appropriate configuration. Manually analyzing another outlier
case, we found 17 commits with modifications to the stale.yml
file in Moya7 project. These modifications included addition
of exempt labels and decreasing both daysUntilStale
and daysUntilClose values. The goal of these changes
are made clear by the contributor who commits the last
modification in daysUntilStale: “... I think leaning on
our bot is a good idea, and I can see us changing this to just
a week sometime in the future.”

RQ2. We observed that ' 59.2% of projects only added
the file and considering the other projects, ' 83% of them
made no more than three modifications. Therefore, the bot
configuration settings for a project looks stable in most
cases.

V. RELATED WORK

Bots are extensively proposed and analyzed in the literature
of different domains, including social media [13]–[15], online
learning [16]–[19], and Wikipedia [20], [21]. In Software
Engineering, bots support several activities automating tasks
that generally require human interaction [3]. While some bots
support development and deployment, team and task manage-
ment, and file sharing, others are used as social media, or even
for fun [2], [5]. In this paper, we extend the existing knowledge
on bots in GitHub by exploring a specific bot, analyzing how
it is adopted, and how much effort the maintainers need to put
to set it.

VI. CONCLUSION

In this paper, we analyzed how OSS projects hosted on
GitHub are using a bot that helps integrators and maintainers
work by automatically labeling and closing abandoned or in-
active issues and pull requests. Exploring the bot configuration
settings (RQ1), we showed that most of projects (' 87.7%)
adopted the stale bot for both issues and pull requests. We also
found that pull requests have been defined to become stale in
fewer days than issues. We also found that abandoned issues
tagged as bug report are generally exempt from staling. In
addition, we investigated how much effort is necessary to set
up the stale bot (RQ2). We found that adopting stale bot does
not require too much effort of maintainers. Most projects made
no more than three changes in the configurations file. Thus,
according to our analysis results, stale bot is a recommended
solution to help maintainers triaging issues and pull requests
that are not affecting the project and the developers, since the
stale characteristics can be adapted for each project.

ACKNOWLEDGMENT

This work is supported by the CNPq (# 430642/2016-4) and
FAPESP MCT/CGI.br (# 2015/24527-3)

6https://github.com/atom/atom/pull/15492
7https://github.com/Moya/Moya

REFERENCES

[1] U. Farooq and J. Grudin, “Human-computer integration,” interactions,
vol. 23, no. 6, pp. 26–32, Oct. 2016.

[2] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one
bot at a time,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 928–931. [Online].
Available: http://doi.acm.org/10.1145/2950290.2983989

[3] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software bots,” IEEE
Software, vol. 35, no. 1, pp. 18–23, 2018.

[4] B. Lin, A. Zagalsky, M. Storey, and A. Serebrenik, “Why developers
are slacking off: Understanding how software teams use slack,” in
Proceedings of the 19th ACM Conference on Computer Supported
Cooperative Work and Social Computing Companion, ser. CSCW
’16 Companion. New York, NY, USA: ACM, 2016, pp. 333–336.
[Online]. Available: http://doi.acm.org/10.1145/2818052.2869117

[5] M. Wessel, B. M. de Souza, I. Steinmacher, I. S. Wiese, I. Polato, A. P.
Chaves, and M. A. Gerosa, “The power of bots: Characterizing and
understanding bots in oss projects,” Proceedings of the ACM on Human-
Computer Interaction, vol. 2, no. CSCW, p. 182, 2018.

[6] Z. Peng, J. Yoo, M. Xia, S. Kim, and X. Ma, “Exploring how software
developers work with mention bot in github,” in Proceedings of the
Sixth International Symposium of Chinese CHI, ser. ChineseCHI ’18.
New York, NY, USA: ACM, 2018, pp. 152–155. [Online]. Available:
http://doi.acm.org/10.1145/3202667.3202694

[7] L. Ren, S. Zhou, C. Kästner, and A. Wasowski, “Identifying redundan-
cies in fork-based development.”

[8] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study
of the pull-based software development model,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 345–355. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568260

[9] L. F. Dias, I. Steinmacher, and G. Pinto, “Who drives company-
owned OSS projects: internal or external members?” J. Braz. Comp.
Soc., vol. 24, no. 1, pp. 16:1–16:17, 2018. [Online]. Available:
https://doi.org/10.1186/s13173-018-0079-x

[10] I. Steinmacher, G. Pinto, I. S. Wiese, and M. A. Gerosa, “Almost
there: A study on quasi-contributors in open source software projects,”
in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: ACM, 2018, pp. 256–
266. [Online]. Available: http://doi.acm.org/10.1145/3180155.3180208

[11] I. Steinmacher, I. S. Wiese, A. P. Chaves, and M. A. Gerosa, “Why
do newcomers abandon open source software projects?” in 2013 6th
International Workshop on Cooperative and Human Aspects of Software
Engineering, ser. CHASE ’13. IEEE, 2013, pp. 25–32.

[12] D. Spadini, M. Aniche, and A. Bacchelli, PyDriller: Python Framework
for Mining Software Repositories, 2018.

[13] S. Savage, A. Monroy-Hernandez, and T. Höllerer, “Botivist: Calling
volunteers to action using online bots,” in Proceedings of the 19th
ACM Conference on Computer-Supported Cooperative Work & Social
Computing. New York, NY, USA: ACM, 2016, pp. 813–822.

[14] N. Abokhodair, D. Yoo, and D. W. McDonald, “Dissecting a social
botnet: Growth, content and influence in twitter,” in Proceedings
of the 18th ACM Conference on Computer Supported Cooperative
Work & Social Computing, ser. CSCW ’15. New York,
NY, USA: ACM, 2015, pp. 839–851. [Online]. Available: http:
//doi.acm.org/10.1145/2675133.2675208

[15] B. Xu, T. C.-W. Yuan, S. R. Fussell, and D. Cosley, “Sobot: Facilitating
conversation using social media data and a social agent,” in Proceedings
of the Companion Publication of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing, ser. CSCW
Companion ’14. New York, NY, USA: ACM, 2014, pp. 41–44.
[Online]. Available: http://doi.acm.org/10.1145/2556420.2556789

[16] S. Ghose and J. J. Barua, “Toward the implementation of a topic specific
dialogue based natural language chatbot as an undergraduate advisor,”
in Informatics, Electronics & Vision (ICIEV), 2013 International Con-
ference on. Washington, DC,USA: IEEE, 2013, pp. 1–5.

[17] A. M. Latham, K. A. Crockett, D. A. McLean, B. Edmonds, and
K. O’Shea, “Oscar: An intelligent conversational agent tutor to esti-
mate learning styles,” in International Conference on Fuzzy Systems.
Washington, DC, USA: IEEE, 2010, pp. 1–8.

[18] K. Nakamura, K. Kakusho, T. Shoji, and M. Minoh, “Investigation of a
method to estimate learners interest level for agent-based conversational
e-learning,” in International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems. Berlin,
Heidelberg: Springer, 2012, pp. 425–433.

[19] C. Roda, A. Angehrn, T. Nabeth, and L. Razmerita, “Using conversa-
tional agents to support the adoption of knowledge sharing practices,”
Interacting with Computers, vol. 15, no. 1, pp. 57–89, 2003.

[20] R. S. Geiger and A. Halfaker, “Operationalizing conflict and cooperation
between automated software agents in wikipedia: A replication and
expansion of ’even good bots fight’,” Proc. ACM Hum.-Comput.
Interact., vol. 1, no. CSCW, pp. 49:1–49:33, Dec. 2017. [Online].
Available: http://doi.acm.org/10.1145/3134684

[21] D. Cosley, D. Frankowski, L. Terveen, and J. Riedl, “Suggestbot:
Using intelligent task routing to help people find work in wikipedia,”
in Proceedings of the 12th International Conference on Intelligent User
Interfaces, ser. IUI ’07. New York, NY, USA: ACM, 2007, pp. 32–41.
[Online]. Available: http://doi.acm.org/10.1145/1216295.1216309

