
The Inconvenient Side of Software Bots on Pull Requests
Mairieli Wessel

University of Sao Paulo
Sao Paulo, Brazil

mairieli@ime.usp.br

Igor Steinmacher
Northern Arizona University

Flagstaff, USA
igor.steinmacher@nau.edu

ABSTRACT
Software bots are applications that integrate their work with hu-
mans’ tasks, serving as conduits between users and other tools. Due
to their ability to automate tasks, bots have been widely adopted by
Open Source Software (OSS) projects hosted on GitHub. Commonly,
OSS projects use bots to automate a variety of routine tasks to save
time from maintainers and contributors. Although bots can be use-
ful for supporting maintainers’ work, sometimes their comments
are seen as spams, and are quickly ignored by contributors. In fact,
the way that these bots interact on pull requests can be disruptive
and perceived as unwelcoming. In this paper, we propose the con-
cept of a meta-bot to deal with current problems on the human-bot
interaction on pull requests. Besides providing additional value
to this interaction, meta-bot will reduce interruptions and help
maintainers and contributors stay aware of important information.

CCS CONCEPTS
• Human-centered computing→ Open source software.
KEYWORDS
software bots, bots, meta-bot, pull-based model, open source soft-
ware

ACM Reference Format:
Mairieli Wessel and Igor Steinmacher. 2020. The Inconvenient Side of Soft-
ware Bots on Pull Requests. In IEEE/ACM 42nd International Conference on
Software Engineering Workshops (ICSEW’20), May 23–29, 2020, Seoul, Repub-
lic of Korea. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3387940.3391504

1 INTRODUCTION
Software bots have become particularly relevant for Open Source
Software (OSS) projects hosted on GitHub, due to the intensive
integration workload inherent to the pull request model [9]. Bots
are software applications that integrate their work with humans’
tasks [11]. Basically, a bot serve as an interface between developers
and other tools [27]. The human-bot integration implies partner-
ship, which means that they complement each others’ activities [8].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3391504

On GitHub, bots are task-oriented, responsible for automating
well-defined tasks to reduce the workload of maintainers and con-
tributors [30]. Particularly, GitHub bots are usually adopted to auto-
mate a variety of predefined tasks, such as ensuring license agree-
ment signing, reporting continuous integration failures, reviewing
code and pull requests [15, 22, 30], triaging issues [31], and refac-
toring the source code [32].

Similarly to human developers, GitHub bots have their own user
profile and interact through comments, becoming new voices on
the pull request conversation [16]. The interaction of these new
“team members”, however, can be disruptive and may affect the pull
request communication and dynamic in unexpected ways. Conse-
quently, their comments are perceived as spams, and sometimes
are quickly ignored by contributors. For example, while project
maintainers may direct their effort to other activities, the bot could
mistakenly close pull requests or provide poor feedback [30] lead-
ing to contributors to stop contributing since lack of feedback on
pull requests may discourage further contributions [25].

Considering the problems aforementioned, related to human-bot
interaction, in this paper we present our vision of a meta-bot. Basi-
cally, this meta-bot will act as a middleman between the developers
and the existing bots interacting on the pull requests. It might avoid,
for example, overwhelming developers with massive information
or unnecessary notifications. Furthermore, it gives the developer a
centralized way to control the dynamic of the interaction.

In this paper, we make the following contributions: (i) an un-
derstanding of bots’ integration on the pull-based model and their
definition; (ii) highlighting of some current problems in the human-
bot interaction on pull requests; and (iii) a vision of a meta-bot to
overcome those current problems.

2 BOTS SUPPORTING PULL REQUESTS
Open Source Software (OSS) development is inherently collabora-
tive, frequently involving a community of geographically dispersed
developers [26]. These developers commonly work on social coding
platforms, such as GitHub, that provide features for collaborating
and sharing [6]. To receive external contributions, repositories are
shared by fork (i.e., clone), and modified by pull requests.

The pull-based model offers new opportunities for community
engagement, especially to OSS community, but at the same time in-
creases the workload for maintainers to communicate, review code,
deal with license issues, explain project guidelines, run tests, and
merge pull requests [10]. Due to this intensive integration work-
load, bots have been adopted to automate a variety of predefined
tasks around pull requests [30].

Behaving as human users, GitHub bots have their own user pro-
file and can open, close, or comment on pull requests and issues.
Additionally, some bots have an official integration with GitHub

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Mairieli Wessel and Igor Steinmacher

“master” branch

(b) Committing new
contribution

 (c) Submitting a
 Pull Request

(d) Discussions,
reviews and

improvements

 (e) Merged

 (f) Closed
(unmerged)

(a) Forking a
 repository

Figure 1: Pull-based model workflow integrated with bots

and are available at the GitHub marketplace1 or Probot2. These
official bots are properly tagged in the pull request messages, such
as Dependabot3.

Bots have spread across all pull-based workflow, as shown in
Figure 1. Bots can be found submitting pull requests, interacting
through comments, and merging or closing them. Some bots au-
tomatically check the project’s source code, searching for broken
dependencies, vulnerabilities, or bugs; and then submits a pull re-
quest for fixing these issues as shown in Fig. 1(a-c). For example,
Dependabot automatically creates pull requests to keep project de-
pendencies up-to-date. The Refactoring-Bot, proposed by Wyrich
and Bogner [32], creates pull requests to refactor the code, removing
code smells.

There are also bots designed to support contributors and main-
tainers after pull requests have been submitted, which aims to fa-
cilitate discussions and reviews (Fig. 1(d)). Git Enforcer4, comments
on pull requests that do not satisfy specific rules defined by the
project maintainers. Moreover, it is also possible to communicate
with some bots through comments in the pull requests. Reminders5

bot, for example, sets a reminder on specific pull request when the
maintainer request. Other bots help maintainers closing or merging
pull requests, as shown in both Fig. 1(e) and Fig. 1(f). Stale bot,
studied in our previous work [31], automatically closes abandoned
pull requests. Mergify6 automatically merges a pull request based
on rules predefined by project maintainers.

2.1 GitHub bot definition
Despite its increasing popularity, analyzing and understanding bots
is a major challenge. The terminology used to describe bots is vast,
diverse, and often inconsistent [12]. Consequently, this hinders a
better understanding of the term bot and its usage. In this paper,
we focus on a specific category of software bot: GitHub bots.

Our definition reflects how a bot works on GitHub. As afore-
mentioned, GitHub bots have their own user profile and can behave
as a developer: opening, closing or commenting on pull requests
and issues. Playing a role within the development team, GitHub
1https://github.com/marketplace
2https://probot.github.io/apps/
3https://dependabot.com
4https://github.com/Schachte/Git-Enforcer
5https://probot.github.io/apps/reminders/
6https://github.com/marketplace/mergify

bots execute well-defined tasks that complement other developers’
work. They also serve as an interface between developers and ex-
ternal services, for example, reporting the results of Continuous
Integration (CI) tools in a pull request comment.

Essentially, we define GitHub bots as task-oriented bots that
behave on the GitHub environment like a human user. A GitHub
bot is an application that integrates its work with human
tasks [8], serving as a interface between users and services [27].
They provide new forms of interactions with already existing
tools [2], automating predefined tasks and binding services to-
gether.

3 RELATEDWORK
In terms of understanding the practical implications of bot adoption,
Storey and Zagalsky [27] describe a cognitive framework to explain
how bots support software development productivity. Storey and
Zagalsky [27] claim that bots are often used to avoid interruptions
to developers’ work, but they may lead to other, less obvious dis-
tractions.

In order to save developers’ time, previous works have focused
on designing bots to be integrated into the pull request workflow
to perform a variety of tasks, such as repairing bugs [16, 17, 28, 29],
refactoring the code [32], recommending tools [3], detecting du-
plicated development [23], updating dependencies [15], and men-
tioning reviewers [21, 22]. Additionally, bots on GitHub are differ-
ent from those found supporting development activities in general.
While GitHub bots automate specific tasks on pull requests, interact-
ing with developers through comments, software engineering bots
focus on answering developers’ questions [1, 4, 5, 19, 20, 33] and are
generally integrated into communication platforms [5, 13, 14, 20].

Although some studies focus on not interrupting developers’
workflow during the bot interaction, they do not draw attention
to potential problems introduced by these bots at large. Further-
more, little has been done to evaluate and improve the state of
practice. Considering this, we focus on problems that contributors
and maintainers face while interacting with software bots on pull
requests of OSS projects. With a more in-depth understanding of
these problems, researchers and practitioners can invest their efforts

The Inconvenient Side of Software Bots on Pull Requests ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

in designing or improving bots, ultimately supporting maintainers
and contributors on reviewing and submitting pull requests.

4 HUMAN-BOT INTERACTION PROBLEMS
GitHub bots have become new voices on the pull request conver-
sation [16]. According to Brown and Parnin [3], the human-bot
interaction onGitHub can be inconvenient and lead to negative feed-
back from maintainers and contributors, due to poor bots’ design.
Consequently, while bots can be useful for automating maintain-
ers’ work, the way they interact may lead to unexpected effects
on the communication and dynamic of the pull request. Mirhos-
seini and Parnin [15], for example, reported that maintainers are
overwhelmed by bots notification, which interrupts their workflow.

A similar problem on the human-bot interaction is explored on
Wikipedia community [18, 34]. Wikipedia bots change the over-
all ecosystem by interacting with their operators, managers, and
human editors, as well as other bots. Zheng et al. [34] describe
that while editors acknowledge bots for streamlining knowledge
production, they complain that bots not only solves problems, but
creates them as well.

In our previous work [30], we openly asked contributors and
maintainers about the “problems/challenges of using bots” on pull
requests. Several contributors complained about the way the bots
interact, saying that the bots provide non-comprehensive/poor feed-
back. Other respondents also referred to communication issues such
as bots introducing communication noise and lack of information on
how to interact with the bot. To go a step further in this investigation,
we gathered some anecdotal evidence of problems in the human-bot
interaction from the state-of-the-practice.

Based on a initial list of GitHub bots from our previous study [30],
we used the GitHub advanced search7 to find potential projects. We
queried the tool, searching for projects that received pull requests
or comments from any of the bots, and projects in which any of
the bots were mentioned by other developers.

For each selected project, we have manually analyzed the pull
requests looking for (i) human users mentioning bots, and (ii) bots’
interactions—such as opening, merging or commenting on pull re-
quests. During this process, we noticed the interaction of other bots
and also considered them in the analysis. We used the challenges
previously identified [30] as a seed to code the issues we identified
in the pull requests, and thus defined the problems faced in the
state-of-the-practice. We present the main categories of problems
in the following.
Bots introducing communication noise — This category repre-
sents the problems that disturb human-bot communication, espe-
cially when the bot comments are seen as spam by contributors and
maintainers. In some cases, bots introduce communication noise
inflating the pull request with annoying comments that are rapidly
ignored. For example, the commitlint bot is responsible for running
a tool, called commitlint8, over all pull requests and then reporting
possible problems as comments. Since this bot adds a comment to
each commit of the pull request, maintainers and contributors are
overwhelmed by notifications. Other example of spamming was

7https://github.com/search/advanced
8https://commitlint.js.org

reported by a contributor of the atom9 project. The contributor
asks project maintainers to remove the lock bot: “Any chance you
guys turn down the lock bot spam, I have a lot of issues subscribed
and I get about 20 notifications per day just from those bot actions
and there does not seem to be away to ignore them”.
Lack of information about the bot — This issue relates to the
way the bots are designed to communicate, which leads them to be
misused. In our previous work [30], we described that maintainers
and contributors complained of the lack of information on how
to interact with bots. Additionally, we found pieces of evidence
that contributors would like to know what is the bot’s role in the
project. For example, after interaction of the React Community Bot
on a specific pull request of the project React10, one contributor
asked for more information about that bot: “Hey guys, how is the
reactjs-bot?.”
Bots taking wrong actions — It was the third most reported
problem by contributors to our previous work [30]. As described
by our respondents, we also found in the state-of-the-practice stale
bot mistakenly closing active pull requests. In some cases, the rule-
based nature of these bots lead them to take wrong actions in certain
situations. In the Concourse project11, for example, after the bot
has marked an active pull request as inactive for three times, a
maintainer commented: “Lemme just slap a label on here to calm
the stale bot down. :P Seems like [the label] is useful if not just as
an aggregator.”

5 THE CONCEPT OF A META-BOT
We envision a meta-bot as a promising approach to deal with cur-
rent problems related to human-bot interaction. Our meta-bot was
inspired by Sadeddin et al. [24] work. In order to deal with several
responses from different bots, Sadeddin et al. [24] showed that a
meta-bot would obtain product information from several shopping
bots, and then summarize and present it to the user. The concept of
meta-bot is also present in the literature of software agents. Gener-
alist agents are also referred to as super bots or meta-bots [7]. This
is because they often combine multiple tasks and functionalities of
specialist agents into a single agent.

Essentially, the meta-bot way to solve interaction problems is
by mediating the action of other bots used on pull requests. It will
operate as an middleman between human developers and the bots
in a repository. Different from other GitHub bots, the meta-bot will
not handle specific tasks on pull requests. Instead, the meta-bot
will provide additional value to the interaction of already existing
bots.

Our envisioned meta-bot will provide more flexibility to devel-
opers, allowing them to configure the dynamic of the interaction.
Moreover, once the meta-bot is integrated into a GitHub repository,
it will be aware of the task-oriented bots adopted to handle the
pull requests. By providing a centralized control, meta-bot will be
capable of integrating and orchestrating those bots.

Following, we provide an overview of how the meta-bot will
mitigate the human-bot interaction problems presented in Section 4.

9https://github.com/atom/atom
10https://github.com/facebook/react
11https://github.com/concourse/concourse

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Mairieli Wessel and Igor Steinmacher

Avoiding massive information — A way to mitigate communi-
cation noise is by restricting inconvenient bots to interact directly
on pull requests. As the meaning of inconvenience can vary from
project to project, the meta-bot will provide an interface that each
project can previously configure bots’ restrictions. Therefore, once a
new pull request is opened, the meta-bot will handle bots’ response
based on the restrictions: (i) allowing the bot interaction (e.g. com-
menting, labeling, assigning a reviewer) or (ii) summarizing the
response of bots not allowed to interact on that pull request.
Supporting developers’ questions and requests —Different from
most common GitHub bots, the meta-bot is a conversational bot.
Maintainers and contributors will be able to interact with the meta-
bot any time via comments on the pull request, asking the meta-bot
for help or clarifications on the existing bots. To answer both de-
velopers’ questions and requests, the meta-bot will collect and
learn from information publicly available on different sources (e.g.
GitHub marketplace, GitHub API, Probot). In response to a develop-
ers’ request, for example, the meta-bot will be able to ask a specific
bot to run.
Providing customizable feedback — In addition to the two pre-
vious functionalities, the meta-bot will allow the customization of
the content of its responses in order to attend the specific interests
and needs of maintainers and contributors. As aforementioned, the
meta-bot will provide summarized feedback based on the other bots
outcome. Developers can manage the information that our bot will
show, requesting it to include or exclude some information.
Handling bot exceptions — If needed, the meta-bot will help
developers to deal with the consequences of one or more bots taking
wrong actions on pull requests. By monitoring the bots’ activity,
the meta-bot learns from previous interactions and suspend those
that attempt to disturb the developers workflow. For example, if
the meta-bot identify bot comments as spam, it will block the bot
to prevent the same action on other pull requests. Additionally, the
meta-bot will request the intervention of a developer.

Figure 2 shows an example of the interaction between a human
developer and the envisioned meta-bot, called Dashbot, on a pull
request. This project adopted four GitHub bots to handle specific
tasks on pull requests:

• trafico-bot12 – a bot that automatically adds labels on pull
requests according to their status (e.g. work in progress, ready
for review)

• commitlint – a bot that checks for conventional commit
rules (see more details in section 4).

• request-info13 – a bot that request more info on pull re-
quests with default title or empty description.

• tester-bot – a bot that runs the tests. This bot was developed
by the maintainers of the project.

A maintainer has created a pull request to integrate an important
feature to the project (Figure 2). In order to mitigate human-bot
interaction problems, Dashbot is responsible for controlling when
and to what extent the other four bots can interact on pull requests.
However, maintainers had previously configured the meta-bot to
allow the interaction of the trafico bot on every new pull request.

12https://github.com/marketplace/trafico-pull-request-labeler
13https://probot.github.io/apps/request-info/

Figure 2: Interfacemockup of the interaction between a con-
tributor/maintainer and the meta-bot on a pull request.

Therefore, the trafico bot added a label to mark the pull request as
ready for review.

Afterwards, the meta-bot received the feedback from two bots:
commitlint and request-info. Instead of have these two bots inflating
the pull request with comments, the meta-bot proactively summa-
rized their feedback on a single comment to notify the maintainer.
At this point, the lack of information on how to interact directly
with a specific bot leads the maintainer asking the meta-bot to call
it.

6 CONCLUSION
The emergence of bot activity all over the OSS community on
GitHub is an indication of the growing importance of these new
team members for automating activities around pull requests. Al-
though this widespread adoption, bots are bothering both contribu-
tors and maintainers. Considering this, we propose the concept of
a meta-bot to mitigate some of the interaction problems introduced
by bots around pull requests.

ACKNOWLEDGMENT
This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior – Brasil (CAPES) – Finance
Code 001, CNPq (# 141222/2018-2) and NSF (# 1815503).

REFERENCES
[1] Ahmad Abdellatif and Emad Shihab. 2019. MSRBot: Using Bots to Answer

Questions from Software Repositories. arXiv preprint arXiv:1905.06991 (2019).
[2] Nick C. Bradley, Thomas Fritz, and Reid Holmes. 2018. Context-aware Conversa-

tional Developer Assistants. In Proceedings of the 40th International Conference
on Software Engineering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY,
USA, 993–1003. https://doi.org/10.1145/3180155.3180238

[3] Chris Brown and Chris Parnin. 2019. Sorry to Bother You: Designing Bots for
Effective Recommendations. In Proceedings of the 1st International Workshop on
Bots in Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE Press,
Piscataway, NJ, USA, 54–58. https://doi.org/10.1109/BotSE.2019.00021

The Inconvenient Side of Software Bots on Pull Requests ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

[4] Liang Cai, Haoye Wang, Bowen Xu, Qiao Huang, Xin Xia, David Lo, and Zhen-
chang Xing. 2019. AnswerBot: an answer summary generation tool based on
stack overflow. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 1134–1138.

[5] Jhonny Cerezo, Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2019.
Building an Expert Recommender Chatbot. In Proceedings of the 1st International
Workshop on Bots in Software Engineering (Montreal, Quebec, Canada) (BotSE ’19).
IEEE Press, Piscataway, NJ, USA, 59–63. https://doi.org/10.1109/BotSE.2019.00022

[6] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding
in GitHub: Transparency and Collaboration in an Open Software Repository. In
CSCW. ACM, New York, NY, USA, 1277–1286.

[7] Meric Dagli. 2019. Designing for Trust. Ph.D. Dissertation. figshare.
[8] Umer Farooq and Jonathan Grudin. 2016. Human-computer integration. interac-

tions 23, 6 (2016), 27–32.
[9] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work

Practices and Challenges in Pull-based Development: The Contributor’s Per-
spective. In Proceedings of the 38th International Conference on Software Engi-
neering (Austin, Texas) (ICSE ’16). ACM, New York, NY, USA, 285–296. https:
//doi.org/10.1145/2884781.2884826

[10] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. 2016. Work
Practices and Challenges in Pull-based Development: The Contributor’s Per-
spective. In Proceedings of the 38th International Conference on Software Engi-
neering (Austin, Texas) (ICSE ’16). ACM, New York, NY, USA, 285–296. https:
//doi.org/10.1145/2884781.2884826

[11] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. 2018. Software
Bots. IEEE Software 35, 1 (2018), 18–23.

[12] Carlene Lebeuf, Alexey Zagalsky, Matthieu Foucault, and Margaret-Anne Storey.
2019. Defining and Classifying Software Bots: A Faceted Taxonomy. In Proceedings
of the 1st International Workshop on Bots in Software Engineering (Montreal,
Quebec, Canada) (BotSE ’19). IEEE Press, Piscataway, NJ, USA, 1–6. https:
//doi.org/10.1109/BotSE.2019.00008

[13] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. 2016.
Why developers are slacking off: Understanding how software teams use slack.
In Proceedings of the 19th ACM Conference on Computer Supported Cooperative
Work and Social Computing Companion. ACM, 333–336.

[14] Christoph Matthies, Franziska Dobrigkeit, and Guenter Hesse. 2019. An Addi-
tional Set of (Automated) Eyes: Chatbots for Agile Retrospectives. In Proceed-
ings of the 1st International Workshop on Bots in Software Engineering (Mon-
treal, Quebec, Canada) (BotSE ’19). IEEE Press, Piscataway, NJ, USA, 34–37.
https://doi.org/10.1109/BotSE.2019.00017

[15] SamimMirhosseini and Chris Parnin. 2017. Can Automated Pull Requests Encour-
age Software Developers to Upgrade Out-of-date Dependencies?. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineer-
ing (Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press, Piscataway, NJ, USA,
84–94. http://dl.acm.org/citation.cfm?id=3155562.3155577

[16] Martin Monperrus. 2019. Explainable Software Bot Contributions: Case Study
of Automated Bug Fixes. In Proceedings of the 1st International Workshop on
Bots in Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE Press,
Piscataway, NJ, USA, 12–15. https://doi.org/10.1109/BotSE.2019.00010

[17] Martin Monperrus, Simon Urli, Thomas Durieux, Matias Martinez, Benoit Baudry,
and Lionel Seinturier. 2018. Human-competitive Patches in Automatic Program
Repair with Repairnator. CoRR abs/1810.05806 (2018). arXiv:1810.05806 http:
//arxiv.org/abs/1810.05806

[18] Claudia Müller-Birn, Leonhard Dobusch, and James D Herbsleb. 2013. Work-to-
rule: the emergence of algorithmic governance in Wikipedia. In Proceedings of
the 6th International Conference on Communities and Technologies. ACM, 80–89.

[19] Alessandro Murgia, Daan Janssens, Serge Demeyer, and Bogdan Vasilescu. 2016.
Among the machines: Human-bot interaction on social q&a websites. In Proceed-
ings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing
Systems. ACM, 1272–1279.

[20] Elahe Paikari, JaeEun Choi, SeonKyu Kim, Sooyoung Baek, MyeongSoo Kim,
SeungEon Lee, ChaeYeon Han, YoungJae Kim, KaHye Ahn, Chan Cheong, and
Andre van der Hoek. 2019. A Chatbot for Conflict Detection and Resolution.
In Proceedings of the 1st International Workshop on Bots in Software Engineering
(Montreal, Quebec, Canada) (BotSE ’19). IEEE Press, Piscataway, NJ, USA, 29–33.
https://doi.org/10.1109/BotSE.2019.00016

[21] Zhenhui Peng and Xiaojuan Ma. 2019. Exploring how software developers work
with mention bot in GitHub. CCF Transactions on Pervasive Computing and
Interaction 1, 3 (01 Nov 2019), 190–203. https://doi.org/10.1007/s42486-019-
00013-2

[22] Zhenhui Peng, Jeehoon Yoo, Meng Xia, Sunghun Kim, and Xiaojuan Ma. 2018.
Exploring How Software Developers Work with Mention Bot in GitHub. In
Proceedings of the Sixth International Symposium of Chinese CHI (Montreal, QC,
Canada) (ChineseCHI ’18). ACM, New York, NY, USA, 152–155. https://doi.org/
10.1145/3202667.3202694

[23] Luyao Ren, Shurui Zhou, Christian Kästner, and Andrzej Wąsowski. 2019. Identi-
fying Redundancies in Fork-based Development. In 2019 IEEE 26th International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
230–241.

[24] KhaledW Sadeddin, Alexander Serenko, and James Hayes. 2007. Online shopping
bots for electronic commerce: the comparison of functionality and performance.
International Journal of Electronic Business 5, 6 (2007), 576.

[25] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa.
2018. Almost There: A Study on Quasi-contributors in Open Source Software
Projects. In Proceedings of the 40th International Conference on Software Engi-
neering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA, 256–266.
https://doi.org/10.1145/3180155.3180208

[26] Igor Fábio Steinmacher. 2015. Supporting newcomers to overcome the barriers to
contribute to open source software projects. Ph.D. Dissertation. Universidade de
São Paulo.

[27] Margaret-Anne Storey and Alexey Zagalsky. 2016. Disrupting Developer Produc-
tivity One Bot at a Time. In Proceedings of the 2016 24th ACMSIGSOFT International
Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016).
ACM, New York, NY, USA, 928–931. https://doi.org/10.1145/2950290.2983989

[28] Simon Urli, Zhongxing Yu, Lionel Seinturier, andMartinMonperrus. 2018. How to
design a program repair bot?: insights from the repairnator project. In Proceedings
of the 40th International Conference on Software Engineering: Software Engineering
in Practice. ACM, 95–104.

[29] Rijnard van Tonder and Claire Le Goues. 2019. Towards s/Engineer/Bot: Principles
for Program Repair Bots. In Proceedings of the 1st International Workshop on Bots
in Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE Press,
Piscataway, NJ, USA, 43–47. https://doi.org/10.1109/BotSE.2019.00019

[30] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese,
Ivanilton Polato, Ana Paula Chaves, and Marco A. Gerosa. 2018. The Power
of Bots: Characterizing and Understanding Bots in OSS Projects. Proc. ACM
Hum.-Comput. Interact. 2, CSCW, Article 182 (Nov. 2018), 19 pages. https:
//doi.org/10.1145/3274451

[31] Mairieli Wessel, Igor Steinmacher, Igor Wiese, and Marco A. Gerosa. 2019. Should
I Stale or Should I Close?: An Analysis of a Bot That Closes Abandoned Issues and
Pull Requests. In Proceedings of the 1st International Workshop on Bots in Software
Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE Press, Piscataway, NJ,
USA, 38–42. https://doi.org/10.1109/BotSE.2019.00018

[32] Marvin Wyrich and Justus Bogner. 2019. Towards an Autonomous Bot for Auto-
matic Source Code Refactoring. In Proceedings of the 1st International Workshop
on Bots in Software Engineering (Montreal, Quebec, Canada) (BotSE ’19). IEEE
Press, Piscataway, NJ, USA, 24–28. https://doi.org/10.1109/BotSE.2019.00015

[33] Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: automated
generation of answer summary to developersź technical questions. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering.
IEEE Press, 706–716.

[34] L Zheng, Christopher M Albano, and Jeffrey V Nickerson. 2018. Steps toward
Understanding the Design and Evaluation Spaces of Bot and Human Knowledge
Production Systems. In Wiki Workshop’19.

