Together or Apart? Investigating a mediator bot to
aggregate bot’s comments on pull requests

Eric Ribeiro*, Ronan Nascimento*, Igor Steinmacher', Laerte Xavier*,
Marco Gerosaf, Hugo de Paula*, and Mairieli Wessel®
*Pontifical Catholic University of Minas Gerais, Brazil
TNorthern Arizona University, USA
fRadboud University, The Netherlands

Abstract—Software bots connect users and tools, streamlining
the pull request review process in social coding platforms. How-
ever, bots can introduce information overload into developers’
communication. Information overload is especially problematic
for newcomers, who are still exploring the project and may
feel overwhelmed by the number of messages. Inspired by the
literature of other domains, we designed and evaluated FUN-
NELBOT, a bot that acts as a mediator between developers and
other bots in the repository. We conducted a within-subject study
with 25 newcomers to capture their perceptions and preferences.
Our results provide insights for bot developers who want to
mitigate noise and create bots for supporting newcomers, laying
a foundation for designing better bots.

Index Terms—Software Bots, GitHub Bots, Open Source Soft-
ware, Software Engineering

I. INTRODUCTION

On social coding platforms such as GitHub, developers are
often overwhelmed by bot pull request notifications, which in-
terrupt their workflow [1]. As pointed out by Wessel et al. [1],
as bots have become new voices in developers’ conversations,
they may overburden developers who already suffer from
information overload when communicating online [2]. This
problem is especially relevant for newcomers, who require
special support during the onboarding process due to the
barriers they face [3]. Newcomers can perceive bots’ complex
answers as discouraging, as bots often provide a long list of
contribution feedback items (e.g., style guidelines, failed tests)
rather than supportive assistance.

Developing ways to deal with the information overload bots
cause is critical for the future of bots in software development.
In other domains, researchers have proposed meta-bots to
integrate and moderate the interactions of multiple bots that
cannot be adapted [4]. In the scope of social coding platforms,
Wessel et al. [5] envisioned a mediator bot as a promising
approach to mitigate the information overload from existing
GitHub bots. However, to date, the design of such a mediator
bot in a social coding platform has not been investigated. In
this paper, we close this gap by understanding how newcomers
consume the information given by FUNNELBOT, a mediator
bot that categorizes and organizes the information from multi-
bots into a single comment in the pull request interface.

Understanding newcomers’ preferences is important to ef-
fectively design bot messages and reduce noise. In this paper,

we evaluate how grouping and categorizing bots’ outputs
compares to the traditional GitHub approach (i.e., multi-
bots commenting on the pull request). Our study focuses on
answering the following research question: How do newcomers
perceive the multi-bot aggregated information?

To answer this research question, we conducted a within-
subject study with 25 participants, including undergraduate
and graduate students who may or may not have previ-
ous experience with bots and open-source software develop-
ment, but are newcomers to the investigated project. Partici-
pants interacted with each information presentation approach
(FUNNELBOT vs. multi-bots) individually and comparatively.
Finally, we compared the perceived usefulness of the ap-
proaches by applying surveys and qualitatively analyzing the
participants’ feedback.

We found that newcomers perceive the information provided
by multi-bots and FUNNELBOT as appropriate, clear, easy to
understand, and useful. However, they have diverse opinions
regarding the amount of information provided. Also, partici-
pants reported that aggregating bot comments helped devel-
opers find the appropriate information. With these findings,
we take a step towards understanding newcomers’ preferences
about bots’ feedback on pull requests. We made the data
publicity available for replication purposes.'

II. RELATED WORK

Despite the widespread adoption of bots on social cod-
ing platforms, the interaction between bots and humans still
presents challenges [6], [1]. Analyzing the tool-recommender-
bot, Brown and Parnin [7] report that bots still need to over-
come problems such as notification overload. Peng and Ma [8§]
studied how developers perceive and work with mention bot
and concluded that it does not meet users’ diverse needs.
Results show that developers are bothered by frequent review
notifications when dealing with a heavy workload. These
results are in line with the study conducted by Wessel et
al. 1], which indicates that noise is a central problem. Noise
affects human communication and the development workflow
by overwhelming and distracting developers. Wessel et al. [5]
have proposed the concept of mediator bot, which aggregates

Uhttps://zenodo.org/record/5596321

and summarizes the information coming from several bots,
to alleviate the information overload. Complementing the
previous literature, we focus on understanding how to adjust
the interaction of existing bots to improve the experience of
newcomers.

III. RESEARCH DESIGN
A. FUNNELBOT prototype

FUNNELBOT was inspired by the meta-bot proposed by
Wessel et al. [5]. To build this idea, we focused on mitigating
communication noise by preventing bots from interacting di-
rectly on pull requests. FUNNELBOT provides an interface that
allows each project to configure bots’ restrictions. Therefore,
once a new pull request is opened, FUNNELBOT aggregates
only the responses of bots allowed to interact with that pull
request.

the-funnel-bot bot commented on 18 Apr + edited ~ @ -
Hi

You have 6 comments made by 4 bots installed on this repo regarding this pull
request. Check them below:

» There are 4 critical comments

¥ There is 1 deploy comment
¥ 1 comment made by codesandbox

This pull request is automatically built and testable in CodeSandbox.

To see build info of the built libraries, click here or the icon next to each commit
SHA.

Latest deployment of this branch, based on commit 7beefoc :

Sandbox Source

Reakit Configuration

» There is 1 info comment

Fig. 1: Example of pull request comment posted by FUNNEL-
Bort

Figure 1 shows an example of pull request comment posted
by our bot. The comment shows an introductory message
(@ in Figure 1), a list with all groups of bot messages

collapsed (in Figure 1), and one expanded example

where we can see the CodesandBox comment (@ in
Figure 1). We implemented FUNNELBOT using Probot,”> a
framework developed by GitHub. We made the description of
the FUNNELBOT’s architecture and implementation publicity
available in our replication package.

B. FUNNELBOT evaluation

To showcase FUNNELBOT to our participants in a
real-world scenario, we created a copy of the open-
source Ariakit’® project, since it uses four bots to sup-

Zhttps://probot.github.io/docs/
3https://github.com/ariakit/ariakit

port the pull request review process. Each bot is respon-
sible for a different task: reakit-bot, codesandbox,
compressed-size—-action, and codecov. All bots re-
port their outputs using comments on the pull request. Since
reakit-bot is a closed-source project-specific bot, and not
accessible in the GitHub Marketplace, we could not use it in
the experiment. Therefore, we replace the reakit-bot with
two well-known and highly utilized bots: request-info
bot and TODO bot.

Sandbox sessions — We conducted sandbox sessions with one
Ph.D. student and four developers who are novices contribut-
ing to open source projects on GitHub. We validated the script
and confirmed whether the session would fit in a 30-minute
time slot. The participants suggested a few minor adjustments,
which we incorporated into the instruments. The data collected
during these sandbox sessions were discarded.

Farticipants recruitment — We used convenience sampling
to recruit participants for our experiment sessions, inviting
students from the institution where one of the authors is a
faculty member. The study was not part of any course, all
the participants were volunteers, and all signed a consent
before their sessions. In total, 22 undergraduate and 3 grad-
uate students were recruited. Their experience contributing to
open-source ranged between none and experienced (with low
experience on average). Finally, their experience with GitHub
bots varied between none and experienced (with no experience
on average). Six participants reported having some experience
with one or more GitHub bots (e.g., dependabot). All other
participants (19) reported no previous interaction with bots.
Experimental sessions — We conducted a series of syn-
chronous within-subject sessions via video calls since it en-
ables us to guide participants throughout the experiment.
Participants received email instructions for the experiment,
a survey with demographic questions, and an invitation to
the video call. We recorded the audio and took notes of all
sessions. The sessions lasted on average 45 minutes.

We started the session with a short explanation about the
research objectives and guidelines. We explained that they
would play the role of a new contributor to the Ariakit project
who has just submitted a pull request. The first scenario
presented to participants (Scenario 1) is based on Ariakit’s pull
request #796.* All comments from humans and bots have been
replicated in two distinct versions of pull request #796 (SI-
FunnelBot and S1-Multibots) with the distinction that one (S/-
Funnel) has its bots comments aggregated by FUNNELBOT.
Thirteen participants (Group 1) interacted with pull request
S1-Multibots; while twelve participants (Group 2) interacted
with pull request S/-FunnelBot. Participants were asked to
use the information presented in the pull request to identify
its current status as well as the next steps for the pull request
to be accepted by the maintainers. After the participant has
completed the pull request analysis, we directed them to a
survey to collect their perceptions.

“https://github.com/reakit/reakit/pull/796

At this point, each of the participants had just interacted

with a single approach (multibots or FUNNELBOT). We then
moved to Scenario 2, which was created based on the pull re-
quest #828. Participants who started with multibots approach
in Scenario 1 (S1-Multibots), interacted with FUNNELBOT
(S2-FunnelBot) approach in Scenario 2 and vice-versa. The
group of participants who analyzed the pull requests SI-
Multibots followed by S2-FunnelBot is referred to as Group 1
(G1), while the group who started with S7-FunnelBot followed
by S2-Multibots is referred to as Group 2 (G2). Once again, we
guided the participants to look at the pull request to understand
its current status and pending tasks. As for Scenario 1, we
redirected participants to a survey after completing the pull
request analysis. This final survey aimed at comparing the two
approaches: FUNNELBOT vs. multi-bots.
Data Analysis — To statistically compare the distributions of
the close-ended questions between group 1 and group 2, we
used the non-parametric Mann-Whitney-Wilcoxon test [9]. In
this context, the null hypothesis (Hp) is that the distributions
of group 1 and 2 answers are the same, and the alternative
hypothesis (H;) is that these distributions differ. We also
use Cliff’s Delta [10] to quantify the difference between
these groups of observations beyond p-value interpretation.
According to Romano et al. [10], the magnitude of delta
(|8]) is assessed using the following thresholds: |6] < 0.147
“negligible”, 6] < 0.33 “small”, [§] < 0.474 “medium”,
otherwise “large.”

We used a card sorting approach [11] to analyze the answers
to the open-ended questions. The first two authors conducted
card sorting in two steps. In the first step, each researcher
independently analyzed the answers (cards) and applied codes
to each answer, sorting them into meaningful groups. Discus-
sion meetings followed this step until reaching a consensus on
each item’s code name and categorization. The answers were
sorted into high-level groups at the end of this process. In the
second step, the researchers analyzed the categories, aiming
to refine the classification and group related codes into more
significant, higher-level categories and themes. We used open
card sorting, meaning we had no predefined codes or groups;
the codes emerged and evolved during the analysis process.

IV. RESULTS
A. Newcomers’ perceptions on FUNNELBOT vs. multi-bots

In this section, we focused on the results obtained after the
participants concluded Scenario 1. Our goal was to compare
the multi-bots versus FUNNELBOT approach (see Figure 2).

Most participants in group 1 (G1) and group 2 (G2) (92%
and 75%, respectively) claimed that bots offered appropriate
information (Q1) for them to decide the next steps (i.e., if any
modification is needed in the pull request before merging). We
did not find a statistically significant difference (p-value 0.412)
between G1 (that interacted with the multi-bots approach) and
G2 (that interacted with FUNNELBOT).

Shttps://github.com/reakit/reakit/pull/828

Q1. Bots provided appropriate information for the
purpose of the contribution
Multi-bots SGlg 0% 8% 92%
FunnelBot (G2) | 8% 17% 75%

Q2. | couldn't understand the information
provided by the bots

Multi-bots EGlg 46% 31% 23%
FunnelBot (G2) 50% 17% 33%

Q3. It was easy to understand the bots

Multi-bots gGlg 0% 23% 7%
FunnelBot (G2) ;25% 17% 58%

Q4. I noticed the presence of the bots

Multi-bots (G1) | 8% 0% 92%
FunnelBot (G2 8% 0% 92%

Q5. The information provided by the bots was
clear

Multi-bots (G1) [15% 15% 69%
FunnelBot (G2) ;25% 25% 50%

Q6. The bots provided information that was
unnecessary

Multi-bots (G1) [77% 23% 0%
FunnelBot (G2) 142% 33% 25%

Q7. The amount of information provided by the
bots was appropriate

Multi-bots (G1) | 8% 38% 54%
FunnelBot (G2 8% 17% 75%

Q8. The bots have contributed to improving the
efficiency of my work

Multi-bots (G1) | 8% 15% 7%
FunnelBot (G2 8% 0% 92%
100 50 0 50 100
Percentage
Response Strongly disagree Disagree Neutral Agree Strongly agree

Fig. 2: Participants’ perceptions about the approaches

Regarding how clear the bots’ comments are (Q2 and Q5),
the response was also very similar between the two groups. For
Q2, 46% of G1 participants disagreed or strongly disagreed
that they could not understand the information, while 50%
of G2 disagreed (p-value 0.910). For QS5, both groups agreed
(69% and 50%, respectively) that the information provided
by the multi-bots (or FUNNELBOT) was clear. We also did
not find a statistically significant difference (p-value 0.571)
between G1 and G2.

Regarding the amount of information offered by the bots
(Q6), the two groups had diverse opinions (p-value 0.037,
0 = 0.474359). The majority (77%) of Gl participants
disagreed that the information offered by the bots was un-
necessary, and the remaining (23%) were neutral. In G2,
42% of the participants disagreed that the information was
redundant, while 33% were neutral, and 25% answered that
the information was unnecessary for them.

Participants also mentioned that it was easy to understand
the information provided by both approaches (77% and 58%,
for G1 and G2, respectively). In Q7, participants also men-
tioned that the amount of the information provided by the bots
was appropriate (54% and 75%, for G1 and G2, respectively).

Regarding the perception of bots’ presence in the pull
request (Q4), the majority of participants in both groups agreed
or strongly agreed that they perceived the presence of multiple
bots (or FUNNELBOT) in the pull request (92% for both
groups, with p-value 0.135). Regarding the usefulness of bot

comments, both groups agreed (77% of G1 and 92% of G2)
that bots’ information has improved efficiency (Q8, p-value
0.472) when performing tasks.

Takeaway message #1

Newcomers perceive the information provided by the multi-
bots and FUNNELBOT approaches as appropriate, clear,
easy to understand, and useful.

B. Comparison of newcomers’ preferences

We also sent our participants a questionnaire to compare
both approaches (see Figure 3).

Q1. In which way of interaction was it possible
to get the information more objectively?
Group 2 (G2) |42% 0% 58%
Group 1 (G1) |15% 8% 7%

Q2. Which way of interaction was it fastest to
find information about the analyzed case?
Group 2 (G2) | 25% 8% 67%
Group 1 (G1) |23% 0% 7%
Q3. In which way of interaction was the
information presented in a more appropriate way
to understanding the problem?
Group 2 (G2) 33% 17% 50%
Group 1 (G1) |31% 38% 31%

Q4. In which way of interaction the amount of
information make the made the process more

difficult?
Group 2 (G2) /50% 25% 25%
Group 1 (G1) 85% 0% 15%

Q5. In which way of interaction was it easier to
identify the bots present in the repository ?

Group 2 (G2) /50% 33% 17%
Group 1 (G1) 31% 8% 62%
100 50 0 50 100
Percentage
Response Multi-bots Neutral FunnelBot

Fig. 3: FUNNELBOT vs multi-bots comparison

Most participants in G1 and G2 (77% and 58%, respec-
tively) identified the FUNNELBOT approach as facilitating
quicker location of information. Most participants (77% in
Gl and 67% in G2) considered FUNNELBOT approach the
fastest way to find information in the analyzed scenario. A
G1 participant described a situation to explain his preference
for FUNNELBOT: “if I am responsible for deploying the
application, 1 will know accurately and quickly where to
look for information regarding my responsibilities in that
repository [...]” A G2 participant reported that, when using
FUNNELBOT, the “information [is] aggregated in a comment
containing all the relevant information generated by the bot,”
which facilitates access to such information.

Participants had different opinions about which approach
made it easier to understand the provided information. In GI,

participants reported that the organization of the information
had not affected their understanding. One participant men-
tioned that when they know the category of the problem re-
ported by the bot (e.g., deploy, critical), they prefer FUNNEL-
BOT because of the comment categorization. However, if they
need to analyze the entire pull request, they prefer the various
bots, as the information is presented along with the pull request
timeline. In G2, 50% of the participants found FUNNELBOT’s
approach as the easiest for understanding the problem reported
by the bots. One participant mentioned that FUNNELBOT “has
the same benefits as the various bots; however, it aggregates
the information, which helps to understand the information”.

In both G1 and G2, the participants (85% and 50%, re-
spectively) said that the interaction with several bots made it
challenging to search for information. Furthermore, most G1
participants (62%) stated that it was easier to identify the bots
present in the repository when interacting with FUNNELBOT.
A participant from this group reported that the way FUNNEL-
BOT comment was structured drew attention and highlighted
the bots commenting on the pull request. In contrast, a more
significant number of G2 participants (50%) stated that it was
easier to identify the bots present in the approach with several
bots.

We also asked participants about the benefits of the multi-
bots approach and the benefits of FUNNELBOT. Concerning
the benefits of FUNNELBOT, the most frequent answer refers
to its ability to facilitate finding important information (8
and 4 mentions, in Gl and G2, respectively). The partici-
pants explained this by mentioning that FUNNELBOT reduces
information overload (3 mentions in G1), categorizes bot
comments (5 and 4 mentions, in G1 and G2 respectively)
and aggregates comments (5 mentions in both groups). One
participant stated that “for people used to contributing to open-
source projects daily, [FUNNELBOT | keeps the information
aggregated into a single comment, giving more Vvisibility to
developers’ comments.”

Takeaway message #2

Although some people reported they preferred the multi-
bot, by analyzing the open-ended questions we noticed that
the information was not useful and, sometimes, disregarded
by the developers—showing that the FUNNELBOT better
organizes the information.

V. DISCUSSION

Developers are constantly relying on bots to stay pro-
ductive [12]. However, the information overload that some
bots introduce can have the opposite effect [13]. To address
this issue, FUNNELBOT introduces a novel approach con-
cerning information organization on pull requests, making it
an alternative to the existing strategy used on GitHub. Our
study contributes with an empirical analysis comparing the
current bots’ information presentation style in GitHub with
the approach proposed by FUNNELBOT.

After completing the second scenario and having contact

with both forms of information presentation, both groups
of participants agreed that the multi-bot approach makes it
difficult to find information. Nine participants pointed to the
information overload derived from the comments from the
multiple bots as the cause of this difficulty. These participants
identified reducing information overload as a positive point
of FUNNELBOT. Therefore, our results demonstrate FUN-
NELBOT as a viable approach to reduce the cognitive load
introduced by bots.
Implications. It is known that developers with different pro-
files and backgrounds have different expectations and prefer-
ences for interacting with bots [6], [1]. Additional effort is
still necessary to investigate how the strategies of aggregating
bots’ information might influence the way developers interpret
the bot comments’ content. How developers think, perceive,
and remember information (i.e., their cognitive style) is likely
to affect how they respond to bot messages and learn from
them [14].

The preliminary implementation of FUNNELBOT revealed
some limitations imposed by the GitHub platform that restrict
the design of bots. Wessel et al. [1] already mentioned some
examples of those technical challenges in their hierarchical
categorization of bot problems. In short, the platform restric-
tions might limit both the extent of bot actions and the way
bots are allowed to communicate. It is essential to provide
a more flexible way for bots to interact on the platform. We
prototyped the strategy of aggregating bot events by designing
a new bot that interacts in the pull request interface; this
idea can be leveraged to reshape the interface and better
accommodate bot interactions.

VI. LIMITATIONS

We are aware that each bot and project has its singularities
and that the open-source universe is expansive—our strategy to
continue collecting data until reaching information saturation
aimed to alleviate this issue. Moreover, our sample was
composed of students. Although they are newcomers [15], we
acknowledge that additional research is necessary to consider
the perspective of practitioners experienced with bots. The
introduction of categorization bias may have occurred dur-
ing the analysis of the open-ended questions. Therefore, the
categorization process was carried out in pairs with a careful
discussion among the authors regarding the categories. We also
tried to order the questions based on the natural sequence of
actions to help respondents understand the questions’ context.

VII. CONCLUSION

We evaluated a mediator bot, called FUNNELBOT, by
comparing it with the current approach used by GitHub.
The evaluation of FUNNELBOT showed that aggregating bot
comments was helpful to facilitate developers in finding and
processing the information from bots, reducing the overload.
Although some participants reported a good experience when
using the multi-bot approach, their interaction showed that

they misunderstood the content of the bots’ comments. Social
coding platforms can implement a strategy of aggregating and
classifying comments to mitigate some interaction problems
in pull requests introduced by bots, and bot developers can
redesign how they present information.

REFERENCES

[1] M. Wessel, 1. Wiese, 1. Steinmacher, and M. A. Gerosa, “Don’t disturb
me: Challenges of interacting with software bots on open source
software projects,” Proceedings of ACM Human-Computer Interaction,
no. CSCW, 2021.

[2] A. Nematzadeh, G. L. Ciampaglia, Y.-Y. Ahn, and A. Flammini,
“Information overload in group communication: From conversation to
cacophony in the twitch chat,” Royal Society open science, vol. 6, no. 10,
p. 191412, 2016.

[3] 1. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social
barriers faced by newcomers placing their first contribution in open
source software projects,” in Proceedings of the 18th ACM conference
on Computer supported cooperative work & social computing, 2015,
pp. 1379-1392.

[4] K. W. Sadeddin, A. Serenko, and J. Hayes, “Online shopping bots for
electronic commerce: the comparison of functionality and performance,”
International Journal of Electronic Business, vol. 5, no. 6, p. 576, 2007.

[5] M. Wessel, A. Abdelattif, I. Wiese, T. Conte, E. Shihab, M. A. Gerosa,
and I. Steinmacher, “Bots for pull requests: The good, the bad, and
the promising,” Proceedings of IEEE/ACM International Conference on
Software Engineering, no. ICSE, 2022.

[6] M. Wessel, B. M. de Souza, 1. Steinmacher, I. S. Wiese, 1. Polato,
A. P. Chaves, and M. A. Gerosa, “The power of bots: Characterizing
and understanding bots in oss projects,” Proc. ACM Hum.-Comput.
Interact., vol. 2, no. CSCW, pp. 182:1-182:19, Nov. 2018. [Online].
Available: http://doi.acm.org/10.1145/3274451

[7]1 C. Brown and C. Parnin, “Sorry to bother you: Designing bots for
effective recommendations,” in Proceedings of the Ist International
Workshop on Bots in Software Engineering, ser. BotSE ’19.
Piscataway, NJ, USA: IEEE Press, 2019, pp. 54-58. [Online].
Available: https://doi.org/10.1109/BotSE.2019.00021

[8] Z. Peng and X. Ma, “Exploring how software developers work with
mention bot in github,” CCF Transactions on Pervasive Computing and
Interaction, vol. 1, no. 3, pp. 190-203, Nov 2019. [Online]. Available:
https://doi.org/10.1007/s42486-019-00013-2

[9] D. Wilks, Statistical Methods in the Atmospheric Sciences, ser. Aca-

demic Press. Academic Press, 2011.

J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate

statistics for ordinal level data: Should we really be using t-test and

cohen’sd for evaluating group differences on the nsse and other surveys,”
in annual meeting of the Florida Association of Institutional Research,

2006, pp. 1-33.

T. Zimmermann, “Card-sorting: From text to themes,” in Perspectives on

Data Science for Software Engineering. Elsevier, 2016, pp. 137-141.

M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one

bot at a time,” in Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, ser.

FSE 2016. New York, NY, USA: ACM, 2016, pp. 928-931. [Online].

Available: http://doi.acm.org/10.1145/2950290.2983989

M. Wessel and 1. Steinmacher, “The inconvenient side of software bots

on pull requests,” in Proceedings of the 2nd International Workshop on

Bots in Software Engineering, ser. BotSE, 2020.

M. Vorvoreanu, L. Zhang, Y.-H. Huang, C. Hilderbrand, Z. Steine-

Hanson, and M. Burnett, “From gender biases to gender-inclusive

design: An empirical investigation,” in Proceedings of the 2019 CHI

Conference on Human Factors in Computing Systems, ser. CHI "19.

New York, NY, USA: Association for Computing Machinery, 2019, p.

1-14. [Online]. Available: https://doi.org/10.1145/3290605.3300283

I. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa, “Overcoming

open source project entry barriers with a portal for newcomers,” in

Proceedings of the 38th International Conference on Software

Engineering, ser. ICSE "16. New York, NY, USA: ACM, 2016, pp. 273—

284. [Online]. Available: http://doi.acm.org/10.1145/2884781.2884806

[10]

[11]

[12]

[13]

[14]

[15]

