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Resumo

Mairieli Santos Wessel. Percepção sobre Software Bots em Pull Requests em Ambi-
entes Sociais de Codi�cação. Tese (Doutorado). Instituto de Matemática e Estatística,

Universidade de São Paulo, São Paulo, 2021.

Software bots são aplicações que integram seu trabalho a tarefas humanas, servindo de interface entre

os usuários e outras ferramentas. Devido à sua capacidade de automatizar tarefas, os bots se tornaram re-

levantes para projetos de software livre hospedados na plataforma GitHub. Geralmente, tais projetos usam

bots para automatizar uma variedade de tarefas, por exemplo, garantir a assinatura do contrato de licença,

relatar falhas de integração contínua, revisar o código e solicitar revisões, fazer a triagem de problemas e

refatorar o código-fonte. No entanto, por meio de estudos preliminares evidenciamos que a interação desses

bots em pull requests pode ser perturbadora para os contribuidores e mantenedores dos projetos. Embora

os bots possam ser úteis para apoiar o trabalho dos mantenedores, às vezes seus comentários são conside-

rados como spams e são rapidamente ignorados pelos contribuidores. Nesta tese, o objetivo foi identi�car

e compreender os desa�os enfrentados pelos mantenedores e contribuidores durante a interação com bots

em pull requests, e projetar e avaliar estratégias que ajudem a mitigar os desa�os encontrados. Para esse

�m, conduzimos um conjunto de estudos, utilizando diferentes métodos de pesquisa. Para identi�car os

desa�os de interação com os bots, entrevistamos 21 pro�ssionais, incluindo mantenedores e contribuidores

de projetos de código aberto, e desenvolvedores de bots. Os dados foram analisados qualitativamente por

meio de codi�cação aberta e axial. Tal análise resultou em uma teoria sobre como os desenvolvedores per-

cebem os comportamentos irritantes dos bots como ruídos. Com base nessa teoria, conduzimos um estudo

participativo empregando design �ction com 32 pro�ssionais e pesquisadores. Para entender a percepção

dos participantes sobre a solução idealizada, realizamos um estudo com um subconjunto contendo 15 partici-

pantes do design �ction. Após concluir essa etapa, identi�camos um conjunto de melhorias para o protótipo

de acordo com as sugestões recebidas dos participantes do estudo. As principais contribuições desta tese

são: (i) elucidação das mudanças nos projetos após a adoção de um ou mais bots; (ii) uma teoria sobre como

o ruído introduzido por bots atrapalha a comunicação e o �uxo de trabalho dos desenvolvedores em projetos

de código aberto; (iii) um conjunto de estratégias para mitigar a sobrecarga de informações gerada pela in-

teração dos bots em pull requests; e (iv) o conceito de um meta-bot para apoiar a contribuição para projetos

de código aberto. Essas contribuições podem ajudar os pro�ssionais a entender os efeitos da adoção de um

bot, e os pesquisadores e designers de ferramentas podem utilizar nossos resultados para melhor apoiar a

interação humano-bot em plataformas sociais de codi�cação.

Palavras-chave: Software Bots. GitHub Bots. Interação Humano-bot. Open Source Software. Desenvol-

vimento Colaborativo. Engenharia de Software.





Abstract

Mairieli Santos Wessel. Perception of Software Bots on Pull Requests on Social
Coding Environments. Thesis (Doctorate). Institute of Mathematics and Statistics,

University of São Paulo, São Paulo, 2021.

Software bots integrate their work with humans’ tasks, serving as conduits between users and other

tools. Due to their ability to automate tasks, bots have become particularly relevant for Open Source Soft-

ware (OSS) projects hosted on GitHub. Commonly, projects use bots to automate various tasks, such as

ensuring license agreement signing, reporting continuous integration failures, reviewing code and pull

requests, triaging issues, and refactoring the source code. However, in preliminary studies, our �ndings

indicate that the interaction of these bots on pull requests can be disruptive and perceived as unwelcoming

by contributors and maintainers. Although bots can be useful for supporting maintainers’ work, sometimes

their comments are seen as spam and are quickly ignored by contributors. In this dissertation, our goal was

to identify and understand challenges maintainers and contributors face during interaction with bots on

pull requests of OSS projects and design and evaluate a software bot that mitigates some of these prob-

lems. Toward this end, we conducted multiple studies using multiple research methods. To identify the

challenges caused by bots in pull request interactions, we interviewed 21 practitioners, including project

maintainers, contributors, and bot developers. The data was qualitatively analyzed using open and axial

coding. Subsequently, the analysis resulted in a theory of how human developers perceive annoying bot

behaviors as noise on social coding platforms. Based on this theory, we conducted a participatory design

�ction study with 32 practitioners and researchers. This study resulted in design strategies that served

as insights to create a prototype. We conducted a suitability study with 15 design �ction participants to

assess the envisioned solution. By collecting participants’ perceptions about a prototype implementing the

envisioned strategies, we identi�ed improvements to the prototype according to the suggestions received

from the study participants. The main contributions of this dissertation are: (i) identifying the changes in

project activity indicators after the adoption of a bot; (ii) proposing a theory about how noise introduced

by bots disrupts developers’ communication and work�ow; (iii) identifying strategies to mitigate the infor-

mation overload generated by the existing bots’ interaction; and (iv) the concept of a meta-bot to support

contribution to OSS projects. These contributions may help practitioners understand the e�ects of adopting

a bot. Researchers and tool designers may leverage our results to better support human-bot interaction on

social coding platforms.

Keywords: Software Bots. GitHub Bots. Human-bot Interaction. Open Source Software. Collaborative

Development. Software Engineering.
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Chapter 1

Introduction

Open Source Software (OSS) development is inherently collaborative, frequently involv-
ing geographically dispersed contributors. OSS projects often are hosted in social coding
platforms, such as GitHub and GitLab, which provide features that aid collaboration and
sharing, such as pull requests (Tsay et al., 2014). Pull requests facilitate interaction among
developers to review and integrate code contributions. In the pull-based development
model, project maintainers carefully inspect code changes and engage in discussion with
contributors to understand and improve the modi�cations before integrating them into
the codebase (McIntosh et al., 2014). The time maintainers spend reviewing pull requests
is non-negligible and can a�ect, for example, the volume of new contributions (Yu et al.,
2015) and the onboarding of newcomers (I. Steinmacher, I. Wiese, et al., 2013).

Software bots play a prominent role in the pull request review process (Wessel,
Souza, et al., 2018). These automation tools serve as an interface between users and
other tools (Storey and Zagalsky, 2016) and reduce the workload of maintainers and con-
tributors. Accomplishing tasks that were previously performed solely by human developers,
and interacting in the same communication channels as their human counterparts, bots
have become new voices in the pull request conversation (Monperrus, 2019). Throughout
comments on pull requests, bots guide contributors to provide necessary information
before maintainers triage the pull requests (Wessel, Souza, et al., 2018). To alleviate their
workload (Gousios, Storey, et al., 2016), project maintainers often rely on software bots
to check whether the code builds, the tests pass, and the contribution conforms to a de�ned
style guide (Vasilescu et al., 2015; D. Kavaler et al., 2019). More complex tasks include
repairing bugs (Urli et al., 2018; Monperrus, 2019), refactoring source code (Wyrich
and Bogner, 2019), recommending tools (Brown and Parnin, 2019), updating depen-
dencies (Mirhosseini and Parnin, 2017), and �xing static analysis violations (Carvalho
et al., 2020).

The introduction of bots aims to save cost, e�ort, and time (Storey and Zagalsky,
2016), allowing maintainers to focus on development and review tasks. However, new
technology often brings consequences that counter designers’ and adopters’ expecta-
tions (Healy, 2012). Developers who a priori expect technological developments to lead to
performance improvements can be caught o�-guard by a posteriori unanticipated opera-
tional complexities and collateral e�ects (Woods and Patterson, 2001). For example, we
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have shown that although the number of human comments decreases after the introduction
of bots (Wessel, Serebrenik, I. S. Wiese, et al., 2020), many developers do not perceive
this decrease (Wessel, Serebrenik, I. Wiese, I. Steinmacher, and Marco Aurelio Gerosa,
2020). These collateral e�ects and the misalignment between the preferences and needs of
project maintainers and bot developers can cause expectation breakdowns, as illustrated
by a developer complaining on social media: “Whoever wrote [bot-name] fundamentally

does not understand software development.”1 Moreover, as bots have become new voices
in developers’ conversation (Monperrus, 2019), they may overburden developers who
already su�er from information overload when communicating online (Nematzadeh et al.,
2016). On an abandoned pull request, a maintainer noted the frequency of actions of a
bot: “@<bot-name> seems pretty active here [...].”2 As the introduction of a technology may
provoke changes in human behavior (Mulder, 2013), it is important to understand how
bots a�ect the group dynamics; yet, this is often neglected (Storey and Zagalsky, 2016;
Paikari and Hoek, 2018).

Considering developers’ perspectives on the overall e�ects of introducing bots, design-
ers can revisit their bots to better support the interactions in the development work�ow
and account for collateral e�ects. So far, the literature presents scarce evidence, and only
as secondary results, of the challenges incurred when adopting bots. Investigating the
usage of the Greenkeeper bot, Mirhosseini and Parnin (2017), for example, report that
maintainers are overwhelmed by bot pull request noti�cations, which interrupt their
work�ow. According to Brown and Parnin (2019), the human-bot interaction on pull
requests can be inconvenient, leading developers to abandon their contributions due to
poor bots’ design. This problem may be especially relevant for newcomers, who require
special support during the onboarding process due to the barriers they face (I. Stein-
macher, T. Conte, et al., 2015; I. Steinmacher, T. U. Conte, et al., 2016). Newcomers can
perceive bots’ complex answers as discouraging, since bots often provide a long list of
critical contribution feedback (e.g., style guidelines, failed tests), rather than supportive
assistance.

To make bots more e�ective at communicating to developers, design problems need to
be solved to avoid repetitive noti�cations, provide consistency in the tasks being done,
and make bots adaptive (Storey, Serebrenik, et al., 2020; Liu et al., 2020). Designers
should envision software bots as socio-technical rather than purely technical applications,
considering human interaction, developers’ collaboration, and ethical concerns (Storey
and Zagalsky, 2016). The adoption of bots in OSS projects is a recent trend and the
literature lacks design strategies that include the end-users’ perspective to enhance the
bots interaction on social coding platforms. Considering this context, in this dissertation
we focus on the challenges incurred by the use of software bots on the pull requests’
work�ow. With a more in depth understanding of the challenges incurred by the bots’
interaction, researchers and practitioners can invest their e�orts in designing or improving
bots, ultimately supporting developers on submitting and reviewing pull requests.

1 https://twitter.com/mojavelinux/status/1125077242822836228
2 https://github.com/facebook/react/pull/12457#issuecomment-413429168

https://twitter.com/mojavelinux/status/1125077242822836228
https://github.com/facebook/react/pull/12457#issuecomment-413429168
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3

1.1 Research Questions
The goal of this research is to identify and understand challenges introduced by

the interaction of bots on pull requests of open-source projects, and design and evaluate
design strategies to mitigate these problems. To achieve this goal, we de�ned three research
questions:

RQ1. How do pull request activities change after a bot is adopted in a project?

Since bots may bring unexpected impacts to group dynamics, as frequently occurs
with new technology adoption, understanding and anticipating such e�ects is important
for planning and management. Our results indicate that the adoption of bots, in fact,
changes the dynamics of pull request activities. These results motivated us to investigate
further developers’ perspectives on the overall e�ects of introducing bots to open-source
projects.

RQ2. What interaction challenges do bots introduce when supporting pull requests?

To understand the impact of bots interaction in-depth, we then focused on investigating
the challenges incurred by bots interaction on pull requests. The main contribution for this
research question is a theory of how human developers perceive annoying bot behaviors
as noise on social coding platforms.

RQ3. What design strategies can potentially reduce the noise created by bots on pull
requests?

As noise emerged as a central challenge in our analysis, we further investigated how
to overcome it. This analysis resulted in a set of design strategies to enhance both bots
and the GitHub platform. Our main �ndings indicate that a meta-bot mediator of other
bots is a promising approach to handle the information overload from existing bots.

1.2 Research Design and Dissertation
Organization

In this dissertation, we use multiple empirical methods to answer the three research
questions. More speci�cally, we follow a mixed-methods approach with a sequential
explanatory strategy, combining data analysis of GitHub data with semi-structured inter-
views conducted with open source developers, qualitative survey analysis, participatory
design �ction, and other experimental studies. The research design comprises three phases
and several complementary studies, as presented in Figure 1.1.

Warm-up – Characterization of GitHub bots. This phase consists of studies con-
ducted during the de�nition of this dissertation’ scope and helped us to de�ne our research
motivation. In the �rst study (S1), we conducted a preliminary study to characterize the
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Characterization of bots

supporting Pull Requests on
GitHub

Phase II - Cataloging of Bot Interaction Challenges

Phase III - Designing Strategies to Overcome Noise

Study 2 (S2) - 
Case Study to explore a

specific type of bot

Theory of Noise

Study 6 (S6) - Interview with
the OSS community

Study 5 (S5) - Analysis of 
the state-of-the-practice

Meta-bot
Requirements

Study 8 (S8) - Conception
of meta-bot based on 

Participatory Design Fiction 

Meta-bot 
Prototype

Study 7 (S7) - Preliminary
conception and evaluation of

the meta-bot
Study 9 (S9) - Experimental

Study to assess the prototype

RQ2

RQ3

Catalog of bot
challenges

RQ2

P1 P2

P9

P10

Legend

Research Question Resulted Paper Resulted Set of Papers

Study outcomeStudy

P11

Meta-bot 
Concept

RQ3

Doctoral Symposium Paper

Generates As input to Shares Resulted Paper

Study 4 (S4) - Quantitative
study on Impacts of GitHub

Action Adoption 
P8

P3

P4

Bots' Impacts

Phase I - Investigating the Effects of Bot Adoption

RQ1

Study 3 (S3) -  Mixed-
methods study on Impacts of

Bot Adoption
P5-7

Figure 1.1: Overview of the Research Design
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bots that support pull requests on GitHub. Our results indicate that bots’ adoption is
indeed widespread in OSS projects hosted on GitHub. Bots perform several tasks, including
ensuring license agreement signing, reporting continuous integration failures, reviewing
code and pull requests, triaging issues, and refactoring source code (Wessel, Souza, et al.,
2018). We also openly asked contributors and maintainers about the “challenges of using
bots” on pull requests. Several contributors complained about the way the bots interact,
saying, for example, that the bots provide non-comprehensive or poor feedback. Contribu-
tors also complained that bots introduce communication noise and that there is a lack of

information on how to interact with the bot. The contributors deemed the current bots as
not smart enough and provided insights into the bots’ potential new features, such as im-

proving noti�cation and awareness, enhancing user interaction, improving communicability,
and answering speci�c questions. Our results suggest that GitHub bots serve as a useful
way to access services and automate tasks; however, in terms of supporting developers’
interaction, they are not as evolved as in other domains (e.g., education, customer service).
These limitations may have in�uenced developers’ perceptions when they reported that
bots should be smarter and have better ways to interact.

After this �rst study, we conducted a case study to explore a speci�c bot, called
stale bot (S2). This GitHub bot helps maintainers by automatically labeling and closing
abandoned issues and pull requests. We looked into the bots’ con�guration settings de�ned
by projects, and how these projects adapt and maintain the bot over time. Our results
indicate that the con�guration of the stale bot does not require too much e�ort from
project maintainers (Wessel, I. Steinmacher, et al., 2019). Most projects made no more
than three changes in the con�guration �le since in approximately 83% of the projects
the con�guration �le was modi�ed three times or less. According to our analysis results,
stale bot is a recommended solution to help maintainers triaging issues and pull requests
that are not a�ecting the project and the developers, since the stale characteristics can be
adapted for each project.

Phase I – Investigating the E�ects of Bot Adoption. To further understand the
e�ects of bot adoption, we focused on one of the most common types of bots we found in
Study 1: code review bots. To understand what happens after the adoption of a bot, we used
a mixed-methods approach (Easterbrook et al., 2008) with a sequential explanatory strat-
egy (Creswell, 2003) (S3), combining data analysis of GitHub data with semi-structured
interviews conducted with open-source developers. We used a Regression Discontinuity

Design (RDD) (Thistlethwaite and D. T. Campbell, 1960) to model the e�ects of code
review bot adoption across 1, 194 OSS projects hosted on GitHub. Afterward, to further
shed light on our results, we conducted semi-structured interviews with practitioners,
including open-source project maintainers and contributors experienced with code review
bots. Our results indicate that the adoption of code review bots increases the number of
monthly merged pull requests, decreases monthly non-merged pull requests, and decreases
communication among developers. From the developers’ perspective, these e�ects are
explained by the transparency and con�dence the bot comments introduce, in addition to
the changes in the discussion focused on pull requests.

In a follow-up study (S4), we investigated whether the aforementioned project activity
indicators change after adoption of the newest type of bot automation introduced by
GitHub: GitHub Actions. We used a RDD to model the e�ect of Action adoption across 926
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projects that had adopted GitHub Actions for at least 6 months. Our �ndings indicate that
the adoption of GitHub Actions increases the number of monthly rejected pull requests
and decreases the monthly number of commits on merged pull requests. This di�ers from
code review bots e�ects, which might be explained by the variety of tasks performed
by the GitHub Actions in the study, and consequently their impacts on pull request
activities. Based on the results of Phase I, we con�rm that bots change the pull request
dynamics and found preliminary evidence of challenges. Thus, we broadly delved into the
challenges of interacting with bots in Phase II. The outcomes of Phase I are summarized
in Chapter 3.

Phase II — Cataloging Bot Interaction Challenges. This phase comprises two
studies to identify interaction challenges introduced by bots around pull requests, aiming
to answer RQ2. To promote this investigation, we looked for challenges reported by
practitioners in the software repositories (S5). We manually analyzed pull requests, looking
for (i) human users mentioning bots, and (ii) bots’ interactions—such as opening, merging,
or commenting on pull requests. We noticed that the bots used in pull requests indeed
(i) overwhelm developers’ communication with noti�cations and feedback, (ii) perform
wrong actions, and (iii) are misused due to their poor documentation (Wessel and I.
Steinmacher, 2020).

In another study (S6), we qualitatively analyzed data collected from semi-structured
interviews with 21 practitioners, including OSS project maintainers, contributors, and bot
developers who have experience interacting with bots on pull requests. After analyzing
the interviews, we validated our �ndings through member-checking. Since noise emerged
as a central theme in our analysis, we further theorized about it, grounded in the data we
collected (Wessel, I. Wiese, et al., 2021). The noise theory from S6 was used as the input
for the following phase of this dissertation. We summarize the outcomes of this phase in
Chapter 4.

Phase III — Designing Strategies to Overcome Noise. After identifying the human-
bot interaction problems, we designed strategies to better support developers’ work on
pull requests. Researchers have proposed the use of a meta-bot to integrate and moderate
the interactions of multiple bots. Sadeddin et al. (2007) showed that a meta-bot could
obtain product information from several shopping bots and summarize the information
before presenting it to users. Previous research also investigated the user experience
of single- vs. multi-bot conversational systems. In a Wizard-of-Oz study, Chaves and
Marco Aurelio Gerosa (2018) found that participants report more confusion in a multi-bot
scenario than when using a meta-bot. The concept of the meta-bot also appears in the
literature on software agents. Generalist agents are usually referred to as Super Bots or
meta-bots (Dagli, 2019) since they often combine multiple tasks and functionalities of
specialist agents into a single agent. Given this preliminary evidence obtained in other
domains, we hypothesize that a meta-bot can mitigate the information overload created by

other bots around pull requests. Compared to other GitHub bots, the meta-bot could provide
additional value to the interaction of already existing bots through the key feature of
summarizing other bots’ outcomes to avoid information overload. First, we implemented
the meta-bot and conducted a preliminary study to validate its concept (S7).

After this preliminary study, we decided to focus on involving the users during the
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design process, to anticipate issues and capture their needs and expectations beforehand.
Therefore, we applied Design Fiction (Blythe, 2014) as a participatory method (S8) to
explore strategies to overcome the information overload evidenced in Phase II. Design
Fiction is frequently used in the Human-Computer Interaction (HCI) �eld to gain insights
to create new or re�ned objects and stories for further discussion. By capturing the
expectations of developers who interact with bots, we elicited design strategies to the
creation of a meta-bot. Using Design Fiction, we presented to participants a �ctional
history of a meta-bot capable of better supporting developers’ interactions on pull requests,
operating as a mediator between developers and the existing bots. Participants answered
questions to complete the end of the �ctional story, raising concerns around the use of
bots and the requirements of the meta-bot.

Then, we used the emerged design strategies to prototype a meta-bot and collect
feedback from the practitioners, which resulted in a set of improvements to the strategies
(S9) aiming to answer RQ3. Overall, our participants perceive the meta-bot as a layer
between other bots and the users. It should summarize and customize messages according
to the author’s context—whether the author is a new contributor or an experienced
maintainer. Participants also envision a separate place in the pull request interface for bot
interactions. In Chapter 5, we summarized the outcomes of Phase III.

This dissertation is organized as following: in Chapter 2, we provide an outline of
software bots concepts, followed by an overview of the state-of-the-art of bots in software
engineering; in Chapter3, we describe the Phase I, which resulted in the preliminary
�ndings that grounded our work; in Chapter 4, we detail the Phase II, which resulted in
the noise theory; and, in Chapter 5, we report the research phase III, including details of
the method we conducted to design and evaluate the prototype. Finally, in Chapter 6, we
present a discussion about our work and future directions.

1.3 Claimed Contributions
We claim that this dissertation contains four main novel contributions, which map onto

the research questions presented in Section 1.1, and are related to the artifacts generated in
phases I, II, and III, as presented in Section . The aforementioned contributions are:

• Empirical identi�cation of the impacts of bots usage to OSS projects. As a
result of Phase I, our work contributes to the state-of-the-art by (i) empirically
identifying the changes in project activity indicators after the adoption of a bot;
and (ii) elucidating the open-source developers’ perspective on the impacts of bots.
Practitioners and maintainers may leverage our results to understand, or even predict,
bot e�ects on their projects.

• Empirical cataloging of challenges incurred by using bots to support con-
tributions on OSS projects. Phase II contributes to the state-of-the-art by (i) iden-
tifying a set of challenges incurred by the use of software bots on the pull requests’
work�ow and (ii) proposing a theory about how noise introduced by bots disrupts
developers’ communication and work�ow. We present a set of 17 general challenges
that have not been reported in the literature. By gathering a comprehensive set of
challenges incurred by bots, our �ndings complement the previous literature, which



8

1 | INTRODUCTION

presents scarce and di�use challenges, reported as secondary results. These �ndings
may guide developers to consider the implications of new bots as they design them.

• Empirical identi�cation of design strategies to future bots and their envi-
ronment. In addition to the understanding of challenges introduced by bots on pull
requests, in Phase III we identi�ed design strategies that could help to overcome
information overload. To do so, we considered the expectations of maintainers,
contributors, bot developers, and experienced researchers. Researchers and tool
designers may also leverage our results to enhance bots’ communication design,
thereby better supporting human-bot interaction on social coding platforms.

• A meta-bot to support contribution to OSS projects. We applied some of the
proposed bot design strategies to a practical setting by building a meta-bot prototype
to support contributions to OSS projects on GitHub.

1.4 Other Results
This doctoral research resulted in scienti�c publications, undergraduate diploma thesis,

open source artifacts, and participation in events. In the following subsections, we present
these results.

1.4.1 Published Papers
During the PhD program, we published several papers related to this dissertation’

topic. So far, the main results were published in papers at CSCW 2018, BotSE 2019, BotSE
2020, SBES - IIER 2020, ICSME 2020, MSR 2021, CSCW 2021, and a journal was submitted
to the Special Issue of ICSME 2020 of the Empirical Software Engineering (EMSE). The
summarized references for the papers originated from this research are:

Papers related to warm-up – Characterization of GitHub Bots

Paper 1. WESSEL, Mairieli; DE SOUZA, Bruno M.; STEINMACHER, Igor; WIESE, Igor
Scaliante; POLATO, Ivanilton; CHAVES, Ana Paula; GEROSA, Marco Aurélio. The Power

of Bots: Characterizing and Understanding Bots in Open Source Software Projects. In: ACM
Conference on Computer Supported Cooperative Work and Social Computing
(CSCW 2018), New York, USA. 2018.

This paper investigates how often popular OSS projects hosted on GitHub adopt bots.
We also report a qualitative analysis on how contributors and maintainers perceive the
relevance of bot support. This served to motivate our research.

Paper 2. WESSEL, Mairieli; STEINMACHER, Igor; WIESE, Igor Scaliante; GEROSA,
Marco Aurélio. Should I Stale or Should I Close? An Analysis of a Bot that Closes Aban-

doned Issues and Pull Requests. In: 1st International Workshop on Bots in Software
Engineering (BotSE 2019), Montréal, CA. 2019.

We report the results of a study that aimed at investigating the adoption of the stale

bot, which helps maintainers triaging abandoned issues and pull requests. This also served
to motivate our research.
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Paper 3. WESSEL, Mairieli. Leveraging Software Bots to Enhance Developers’ Collab-

oration in Online Programming Communities. In: Companion Publication of the 2020
Conference on Computer Supported Cooperative Work and Social Computing:
Doctoral Consortium, 2020.

Paper 4. WESSEL, Mairieli. Enhancing Developers’ Support on Pull Requests Activities

with Software Bots. In: ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE) - Doctoral
Symposium, 2020.

Papers 3 and 4 are doctoral symposium papers that discuss the method for this disser-
tation and the expected contributions to the area of software bots in software engineer-
ing.

Papers related to Phase I – Investigating the E�ects of Bot Adoption

Paper 5. WESSEL, Mairieli; SEREBRENIK, Alexander; STEINMACHER, Igor; WIESE,
Igor Scaliante; GEROSA, Marco Aurélio. What to Expect from Code Review Bots? A Survey

with OSS Maintainers. In: Insightful Ideas and Emerging Results Track of Brazilian
Symposium on Software Engineering (SBES - IIER), 2020.

This study reports how project maintainers experience code review bots. Our �nd-
ings reveal that the most frequent expectations include enhancing the feedback bots
provide to developers, reducing the maintenance burden for developers and enforcing
code coverage.

Paper 6. WESSEL, Mairieli; SEREBRENIK, Alexander; STEINMACHER, Igor; WIESE,
Igor Scaliante; GEROSA, Marco Aurélio. E�ects of Adopting Code Review Bots on Pull

Requests to OSS Projects. In: 36th IEEE International Conference on Software Main-
tenance and Evolution (ICSME), 2020.

In this study, we investigate how several activity indicators change after the adoption
of a code review bot using regression discontinuity design. This paper received an IEEE

TCSE Distinguished Paper Award.

Paper 7. WESSEL, Mairieli; SEREBRENIK, Alexander; STEINMACHER, Igor; WIESE,
Igor Scaliante; GEROSA, Marco Aurélio. Quality Gatekeepers: Investigating the E�ects of

Code Review Bots on Pull Request Activities. Submitted to Special Issue of ICSME 2020
of the Empirical Software Engineering (EMSE), 2021.

This paper extends paper 6. In this extended version, we provide a broader vision
of how code review bots a�ect the pull request work�ow, also considering the practical
perspective of open-source developers.

Paper 8. KINSMAN, Timothy; WESSEL, Mairieli; GEROSA, Marco Aurélio; TREUDE,
Christoph. How Do Software Developers Use GitHub Actions to Automate Their Work�ows?

In: Mining Software Repositories Conference (MSR), 2021.

In this study, we investigate how several activity indicators change after the adoption
of a GitHub Actions, following the studies conducted in Papers 6 and 7.
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Papers related to Phase II – Cataloging Bot Interaction Challenges

Paper 9. WESSEL, Mairieli; STEINMACHER, Igor. The Inconvenient Side of Software

Bots on Pull Requests. In: 2nd International Workshop on Bots in Software Engineer-
ing (BotSE), Seoul, South Korea. 2020.

This paper empirically investigates problems introduced by bots while interacting on
pull requests. In this paper, we also introduced the concept of the meta-bot.

Paper 10. WESSEL, Mairieli; WIESE, Igor Scaliante; STEINMACHER, Igor; GEROSA,
Marco Aurélio. Don’t Disturb Me: Challenges of Interacting with Software Bots on Open

Source Software Projects. In: ACM Conference on Computer Supported Cooperative
Work and Social Computing (CSCW), 2021.

We identi�ed several challenges caused by bots in pull request interactions. In particular,
our �ndings indicate noise as a recurrent and central problem.

Papers related to Phase III – Designing Strategies to Overcome Noise

Paper 11. WESSEL, Mairieli; ABDELLATIF, Ahmad; SHIHAB, Emad; Igor; WIESE,
Igor Scaliante; GEROSA, Marco Aurélio. Bots for Pull Requests: The Good, the Bad, and the

Promising. Under submission.

In this paper, we applied Design Fiction as a participatory method to explore strategies
to overcome the information overload caused by bots. Furthermore, it is worthwhile to
mention that this paper was being prepared by the time this text was written.

1.4.2 Developed Software
BotHunter — we have been developing a tool to identify GitHub bots in collaboration

with Dr. Emad Shihab and his team. This tool is useful for future research since we can
identify the bots interacting on a project without searching it manually.

Curated list of SE bots — due to the lack of resource available of software bots on
GitHub, we have created a curated list of software engineering bots.3 The list was enhanced
during the Dagstuhl Seminar “BOTse: Bots in Software Engineering”.

1.4.3 Awards
Paper 7 received an IEEE TCSE Distinguished Paper Award at the International Confer-

ence on Software Maintenance and Evolution (ICSME 2020).

1.4.4 Funding
CNPq Scholarship. This research was supported by the Brazilian National Council

for Scienti�c and Technological Development (CNPq) grant 141222/2018-2.

ELAP 2021. The author’s visit to Concordia University’s Data-driven Analysis of
Software (DAS) Lab, Canada, from February to July 2021 under the supervision of Dr.

3 https://github.com/mairieli/awesome-se-bots

https://github.com/mairieli/awesome-se-bots
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Emad Shihab. This exchange was supported by a scholarship from the Emerging Leaders
in the Americas Program.

1.4.5 Advising
Graduation Thesis. Eric Patrick Delgado Ribeiro and Ronan Felipe Nascimento de

Souza. Agregada ou Separada? Como a Informação de Bots é Percebida por Desenvolvedores

Novatos em Pull Requests. 2021. Trabalho de Conclusão de Curso. Pontifícia Universidade
Católica de Minas Gerais (PUC Minas). Advisors: Hugo Bastos de Paula / Mairieli Wes-
sel.

1.4.6 Community Service
Because of the results of this research and its repercussion, the author was invited

to:

Journal Guest Editor — Guest Editor of the Special Issue on Bots in Software Engi-
neering, IEEE Software Magazine, 2021.

BotSE21 Co-organizer — Invited to the co-organize the 3rd International Workshop
on Bots in Software Engineering4 co-located with ICSE 2021.

BotSE20 Program Committee — Invited to the program committee of the 2nd Inter-
national Workshop on Bots in Software Engineering co-located with ICSE 2020.

Dagstuhl Seminar — Invited to attend the Dagstuhl Seminar, “BOTse: Bots in Software
Engineering”, 5 held at Schloss Dagstuhl in Germany from November 17 to November 22,
2019. Schloss Dagstuhl is one of the world’s leading research centers in informatics and
has been hosting invitation-only seminars since 1990.

4 https://botse.org
5 https://www.dagstuhl.de/19471

https://botse.org
https://www.dagstuhl.de/19471
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Chapter 2

Background

In this chapter, we provide an overview of the origin and evolution of software bots.
Additionally, we present a brief explanation of the de�nition that will be considered in this
thesis. Then, we explore some existing approaches for classifying software bots, followed
by the rise and adoption of bots on OSS projects. Finally, we also present an overview of
the current state-of-the-art of software bots.

2.1 Origin and Evolution of Software Bots
The term bot originated as an abbreviation of robot. Since robots and software bots are

used in the physical world and digital world respectively, the relationship between both
terms emerged. The similarity between them is that robots and software bots are often
used to automate repetitive tasks (C. Lebeuf, Zagalsky, et al., 2019).

The origin of conversational agents (or chatbots), dates back to 1950 when Alan Tur-
ing proposed that machines could think (Turing, 1950). Turing’s research triggered the
development of chatbots, which are computer programs designed to interact with humans
using a natural language (Shawar and Atwell, 2007). Initially, chatbots were created
and used for entertainment. Eliza was the �rst computer program that enabled natural
language interaction between humans and devices (Weizenbaum et al., 1966). Eliza was
developed in 1966 by an MIT professor called Joseph Weizenbaum, and was designed to
mimic a psychotherapist. Since then, the interaction between computers and humans has
been a challenge for researchers (Dale, 2016; Vinciarelli et al., 2015; Zue and Glass,
2000).

Advancements in �elds such as Arti�cial Intelligence (AI), Natural Language Processing
(NPL), and Machine Learning (ML) have caused (i) a higher usage of bots in several
domains; and (ii) partnerships in which computers and humans construct meaning around
each other’s activities (Farooq and Grudin, 2016). According to C. R. Lebeuf (2018), the
mainstream adoption of software bots also occurred because of (i) numerous technological
breakthroughs; (ii) dominant adoption of both messaging and voice-only platforms; (iii)
and the abundance of public APIs and datasets. Bots enhance collaborative work (R Stuart
Geiger, 2013) and in�uence changes in the workplace (Lee et al., 2017).



14

2 | BACKGROUND

Over the last few years, technological enterprises have developed bots as intelligent per-
sonal assistants, such as Apple’s Siri (Winarsky et al., 2012) and Google Assistant (Statt,
2016), using conversational interfaces to automate personal tasks for users. In contrast,
thousands of bots perform speci�c tasks in a narrow domain of expertise (Dale, 2016). For
example, bots have been used for education (Kerry et al., 2008), focusing on students’ en-
gagement (Benotti et al., 2014; Bii, 2013; Fryer et al., 2017), self-guided learning (Pereira,
2016), course advising (Kim et al., 2007), tutoring (Tamayo-Moreno and Pérez-Marín,
2017; Tegos and Demetriadis, 2017) and coaching (Maurer and Weihe, 2015).

Bots have also been used for marketing, e-commerce (Mimoun et al., 2017; Thomas,
2016), and customer services (Gnewuch et al., 2017; Jain et al., 2018). Bots have also played
a relevant role in peer production communities, such as Wikipedia (Cosley et al., 2007;
R Stuart Geiger, 2013; R. Stuart Geiger and Halfaker, 2017), Reddit (Long et al., 2017),
and social media (Savage et al., 2016; Abokhodair et al., 2015; Bin Xu et al., 2014).

2.2 Software Bots De�nition
Despite its increasing popularity, analyzing and understanding bots is a major challenge.

The terminology used to describe software bots is vast, diverse, and often inconsistent (C.
Lebeuf, Zagalsky, et al., 2019). The terminology consists of di�erent terms such as: robots,
bots, chatbots, chatterbots, and software agents; which are often used for several �elds,
ranging from automated social media accounts to conversational agents. Consequently,
this hinders a better understanding of the term bot and its usage.

Researchers and practitioners have de�ned software bots according to their speci�c
applications. Following, we highlight four trends in how software bots have been described
in the state-of-the-art.

Bots as automation providers. The de�nition of bots is often linked to their ability
to automate tasks (Storey and Zagalsky, 2016; Cosley et al., 2007; Long et al., 2017).
The Merriam-Webster dictionary de�nes bots as “a computer program that performs au-

tomatic repetitive tasks.” In the context of software development, Storey and Zagalsky
(2016) proposed that bots are “applications that perform repetitive prede�ned tasks to save

developer’s time and increase their productivity.” Several researchers have de�ned bots
based on their autonomy to perform tasks. According to Wyrich and Bogner (2019),
“a bot is intelligent software that acts (to some extent) autonomously to achieve a de�ned

goal and o�ers functionality for interaction.” Moreover, autonomous bots can often lead to
mistakenly de�ning them as computer scripts. As stated by C. R. Lebeuf (2018), some bots
are complex programs written in a compiled language, and thus unsatisfy the requirements
for computer scripts.

Bots with conversational skills. Bots are also de�ned based on their ability to communi-
cate using human language (Matthies et al., 2019; Abdellatif et al., 2020). Furthermore,
Dale (2016) describes the relationship between humans and bots as “achiev[ing] some result

by conversing with a machine in a dialogic fashion, using natural language.” Additionally,
many researchers and practitioners use the term chatbot to refer to software bots, and
vice versa. Although several popular bots do in fact have some sort of language capability,
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engaging in conversations is not required for software bots (C. R. Lebeuf, 2018; Paikari,
Choi, et al., 2019). More speci�cally, chatbots stand out from software bots because of their
ability to communicate with users through human language.

Bots with human-like behaviors. According to the Oxford English Dictionary, bots
can act and be perceived as humans: “an autonomous program on a network (especially

the Internet) which can interact with systems or users, especially one designed to behave

like a player in some video games”. Similarly, Maus (2017) de�nes bots as “automated or

largely automated programs that interface with online platforms in largely the same way

that a typical human would be expected to: they hold normal accounts, make connections,

and post content.” In the context of software development, Erlenhov, Oliveira Neto,
et al. (2019) proposed the de�nition of which DevBots: “an arti�cial software developer

which is autonomous, adaptive, and has technical as well as social competence.” Monperrus,
Urli, et al. (2019) goes as far as claiming that “we are now at the beginning of an exciting

era where software bots will make contributions that are of similar nature than those by

humans.”

Bots as an interface between users and services. As described by Storey and Zagal-
sky (2016), bots implement “a conduit or an interface between users and services.” Recently,
C. R. Lebeuf (2018) explored the similarities between the aforementioned interpretations
of bots, and then proposed an updated de�nition: software bot is “an interface that con-

nects users to services.” According to C. R. Lebeuf (2018), this interface usually provides
“additional value (in the form of interaction style, automation, anthropomorphism, etc.) on

top of the software service’s basic capabilities.” Moreover, the way bots act now, is just a
di�erent way to access services, which makes the di�erence between them so subtle.

In this thesis, we focus on GitHub bots. Although we are not intended to de�ne software
bots in general, it is important to narrow the de�nition of GitHub bots we adopted. Our
de�nition builds upon many of the aforementioned de�nitions and re�ects how a bot
works on GitHub. Similarly to human users, GitHub bots have their own user pro�le and
can behave as a developer: opening, closing or commenting on pull requests and issues.
Playing a role within the development team, GitHub bots execute well-de�ned tasks that
complement other developers’ work. They also serve, for example, as an interface between
developers and other tools, such as Continuous Integration (CI) tools.

Essentially, we de�ne GitHub bots as task-oriented bots that act on the GitHub envi-
ronment. A GitHub bot is an application that integrates its work with human tasks (Farooq
andGrudin, 2016), serving as a conduit between users and services (Storey and Zagalsky,
2016). They provide new forms of interactions with already existing tools (Bradley et al.,
2018), automating prede�ned tasks and binding services together.

The following sections explore the classi�cation of software bots in the context of
software engineering, and reasons for their popularity in Github.

2.3 Bots on Software Engineering
In terms of understanding the practical implications of bot adoption, Storey and

Zagalsky (2016) describe a cognitive framework to explain how bots support software
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development productivity. The framework identi�es bots’ role in di�erent phases of the
software development lifecycle: code bots, test bots, operations bots, support bots, and
documentation bots. Storey and Zagalsky (2016) highlight the importance of automat-
ing tedious tasks during development by integrating bots in the developer’s existing
environment.

In addition to de�ning software bots, C. Lebeuf, Zagalsky, et al. (2019) provide a
faceted taxonomy to characterize bots based on a literature review. The taxonomy consists
of three main facets: (i) properties of the environment in which the bot was created; (ii)
intrinsic properties of the bot; and (iii) the interactions of the bot within the environment.
C. Lebeuf, Zagalsky, et al. (2019) detail the facets into sets of sub-facets.

Erlenhov, Oliveira Neto, et al., 2019 propose a faceted taxonomy of bots focused
on software development activities (DevBots), orthogonal to the taxonomy provided by
C. Lebeuf, Zagalsky, et al. (2019). The taxonomy consists of four main facets: (i) purpose
of the bot; (ii) type of initiation of the bot; (iii) properties of bot communication; and (iv)
how bots handle information for completing tasks.

In terms of collaborative software engineering, preliminary studies aim to understand
bots and their interactions with messaging tools (Lin et al., 2016) and social media (Pérez-
Soler et al., 2017). In collaborative software development environments, bots automate
tasks that generally require human interaction (C. Lebeuf, Storey, et al., 2018). The
following section focuses on the rise and adoption of software bots for supporting OSS
development on GitHub.

2.3.1 The rise of bots on GitHub
Open Source Software (OSS) development is inherently collaborative, frequently in-

volving a community of geographically dispersed developers (I. F. Steinmacher, 2015).
These developers commonly work on social coding platforms, such as GitHub, that provide
features for collaborating and sharing (Dabbish et al., 2012). To receive external contribu-
tions, repositories are shared by fork (i.e., clone), and modi�ed by pull requests. Figure 2.1
shows an overview of the process to send contributions using pull requests.

“master” branch

(b) Committing new 
contribution

(a) Forking a
     repository

(c) Submitting a
  Pull Request

(d) Discussions, 
reviews and 

improvements

(e) Merged

(f) Closed
(unmerged)

Figure 2.1: Pull-based model work�ow on GitHub (Derived from GitHub)

In the pull-based model, contributors lack access to modify repositories of their in-
terest (Gousios, Pinzger, et al., 2014a). Instead, contributors can clone (or fork) the main
repository, as shown in Figure 2.1(a). Once the main repository has been forked, they can
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provide their contributions independently (Figure 2.1(b)), thus not interfering in other
repositories. It is worth mentioning that contributions are not restricted to writing code,
other types include reporting bugs, translating, improving documentation, and so on. Once
changes are ready for submission, contributors request a pull of such changes to the main
repository, as shown in Figure 2.1(c). The maintainers are then responsible for evaluating
the quality of the contributions, o�ering suggestions, and discussing with the contributors
(Figure 2.1(d)). If the contribution ful�lls the project requirements, a maintainer merges it
to the speci�ed branch of the main repository (Figure 2.1(e)). Otherwise, the maintainer
rejects and closes the pull request (Figure 2.1(f)).

The pull-based model o�ers new opportunities for community engagement, espe-
cially to OSS community, but at the same time increases the workload for maintainers to
communicate, review code, deal with license issues, explain project guidelines, run tests,
and merge pull requests (Gousios, Storey, et al., 2016). Due to this intensive integration
workload inherent to the pull request model (Gousios, Storey, et al., 2016), software bots
have become particularly relevant for OSS projects hosted on GitHub.

On GitHub, bots are commonly adopted to automate a variety of prede�ned tasks
around pull requests. As aforementioned, GitHub bots have their own user pro�le and
can open, close, or comment on pull requests and issues. Additionally, some bots have an
o�cial integration with GitHub and are available at the GitHub marketplace1 or Probot 2.
These bots are properly tagged in the pull request messages, such as Dependabot

3.

“master” branch

(a) Forking a
     repository

(b) Committing new 
contribution

(c) Submitting a
  Pull Request

(d) Discussions, 
reviews and 

improvements

(e) Merged

(f) Closed
(unmerged)

Figure 2.2: Pull-based model work�ow integrated with bots

Bots have spread across all pull-based work�ow, as shown in Figure 2.2. Bots can be
found submitting pull requests, interacting through comments, and merging or closing
them. Some bots automatically check the project’s source code, searching for broken
dependencies, vulnerabilities, or bugs; and then submit a pull request for �xing these issues
as shown in Figure 2.2(a). For example, Dependabot automatically creates pull requests
to keep project dependencies up-to-date. The Refactoring-Bot, proposed by Wyrich and
Bogner (2019), creates pull requests to refactor the code, removing code smells.

There are also bots designed to support contributors and maintainers after pull requests
have been submitted, which aims to facilitate discussions and reviews (Figure 2.2(d)). Git

1 https://github.com/marketplace
2 https://probot.github.io/apps/
3 https://dependabot.com

https://github.com/marketplace
https://probot.github.io/apps/
https://dependabot.com
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Enforcer
4, comments on pull requests that do not satisfy speci�c rules de�ned by the

project maintainers. Moreover, it is also possible to communicate with some bots through
comments in the pull requests. Reminders

5 bot, for example, sets a reminder on a speci�c
pull request when the maintainer requests it. Other bots help maintainers closing or
merging pull requests, as shown in both Figure 2.2(e) and Figure 2.2(f). Stale bot, studied in
our previous work (Wessel, I. Steinmacher, et al., 2019), automatically closes abandoned
pull requests.

In fact, these new “team members” have become new voices on the pull request con-
versation (Monperrus, 2019). According to Brown and Parnin (2019), the human-bot
interaction on GitHub can be inconvenient and lead to negative feedback due to poor
design. Consequently, although bots can be useful for supporting maintainers’ work,
their comments are seen as spam, and sometimes are quickly ignored by contributors.
Interviewing industry practitioners, Erlenhov, Neto, et al. (2016) found that bots cause
interruption and noise, trust, and usability issues.

A similar problem is explored on Wikipedia community (Müller-Birn et al., 2013;
Zheng et al., 2018). Wikipedia bots change the overall ecosystem by interacting with their
operators, managers, and human editors, as well as other bots. For example, Zheng et al.

(2018) describe how although editors appreciate Wikipedia bots for streamlining knowledge
production, they complain that the bots create additional challenges. To circumvent some
of these challenges, Wikipedia established rigid governance roles (Müller-Birn et al.,
2013). Bots need to contain the string “bot” in their username, have a discussion page that
clearly describes what they do, and can be turned o� by any member of the community at
any time.

2.4 Related Work
This section presents an overview of the current state of software bots supporting

software development activities, with an emphasis on bots integrated into the GitHub
environment: GitHub bots.

2.4.1 Bots Supporting Software Development Activities
In recent years, software bots have been proposed to support collaborative software

engineering, encompassing both technical and social aspects of software development
activities (Lin et al., 2016). Storey and Zagalsky (2016) present a cognitive framework to
support the software bot landscape. Matthies et al. (2019) proposed employing bots in
agile retrospectives, thereby attempting to enhance the development process. Matthies
et al. (2019) consider a Slack bot as a convenient interface for interacting with the software
development team.

Other studies have used bots for answering developers’ questions, thus saving time
and improving e�ciency. For example, Bowen Xu et al. (2017) proposed AnswerBot, a

4 https://github.com/Schachte/Git-Enforcer
5 https://probot.github.io/apps/reminders/

https://github.com/Schachte/Git-Enforcer
https://probot.github.io/apps/reminders/
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bot that automatically generates an answer to a technical problem. Basically, AnswerBot

extracts answers from Stack Over�ow and summarizes them according to developers’
questions. A user study was conducted with 6 developers to evaluate answers generated by
AnswerBot. The results show that AnswerBot can potentially help developers to improve
their e�ciency for problem-solving.

Murgia et al. (2016) built and compared the impact of two identical bots, which aimed
to answer developers’ questions in Stack Over�ow. The only di�erence between these
two bots is their identity: the �rst bot is presented as a human being, while the second is
presented as a bot. The results show that developers had a higher con�dence in results
provided by the “human” bot than its counterpart. Murgia et al. (2016) explain that
developers have a very low tolerance and very high expectations for answers or artifacts
provided by bots.

In order to automate data extraction from software repositories, Abdellatif et al.

(2020) designed MSRBot, a bot that answers questions of a speci�c project. Abdellatif
et al. (2020) performed a user study with 12 developers, who were invited to ask questions
about speci�c topics. The results indicate that MSRBot is useful, e�cient, and accurate for
answering the most common questions. However, developers suggest deep-dive answers,
thereby diving deeper into the results.

Similarly, Romero et al. (2020) also designed and implemented GitterAns, a bot to
automatically detect when a developer asks a technical question in a Gitter chat and
leverages the information from Q&A forums to provide the developer with possible
answers to their question. According to Romero et al. (2020), a preliminary evaluation
showed that GitterAns is currently able to detect troubleshooting questions with 78%
accuracy.

Cerezo et al. (2019) proposed a bot to help developers �nd the most appropriate
members of open source projects. In order to meet research objectives, a preliminary
study was performed, analyzing interactions between participants. Moreover, interviewers
and emotion tests were conducted. The results show that while participants are open
to recommendations from bots, signi�cant work is necessary to increase its acceptance.
In fact, participants expected the bot to communicate with them, rather than simply
answering queries.

Paikari, Choi, et al. (2019) implemented a prototype version of Sayme, a bot that
provides information on potential direct and indirect con�icts, thereby helping developers
to solve them. Unlike previous studies, Sayme was designed to operate both proactively
and reactively. Proactively, this bot can respond to user questions about di�erent works
by developers. Reactively, Sayme can notify developers of emerging con�icts.

Dominic et al. (2020) proposed a conversational bot that would recommend projects
to newcomers and assist in the onboarding to the open source community. The bot
was designed to provide helpful resources, such as Stack Over�ow related content. It
would also be able to recommend human mentors for newcomers. Dominic et al. (2020)
believe that having a bot to support newcomers may increase the chances of long-term
engagement.

So far, the aforementioned studies focused on the design and development of bots, as
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well as the evaluation of bots’ capabilities and performance. However, other studies in the
literature investigate the usage and impact of software bots in communication platforms
used by developers, such as Slack. Considering this perspective, Lin et al. (2016) conducted
a survey to developers that used Slack or created Slack bots, thus aiming to understand
their usage. Results demonstrated that developers use and create diverse Slack bots to
support both technical and social activities. A. Pinheiro et al. (2019) went a step further
and conducted a survey to understand the motivations for developing a Slack bot. Results
show that the main purpose of developers was to satisfy their personal needs, as well as
to solve problems in either their workspace or daily life.

Although these studies are related to our research, they study bots that support de-
velopment activities in online platforms in general, as known as DevBots (Erlenhov,
Oliveira Neto, et al., 2019). We summarize these studies in Table 2.1, which reveals that
most of these bots were integrated into communication platforms, such as Slack and
Discord. Furthermore, most of these bots focused on answering developers’ questions
about technical problems, repositories, or mentors. Section 2.4.2 presents studies speci�c
to bots on GitHub.

Study Environment type Study type Main Findings

Matthies et al. (2019) Slack Concept de�nition
Bots, more speci�cally chatbots, provide a
convenient user interface for interacting
with the outcomes of software activities.

Bowen Xu et al. (2017) and
Cai et al. (2019)

Standalone1
User study with 6 develop-
ers

AnswerBot can potentially help develop-
ers improve their e�ciency for problem-
solving.

Abdellatif et al. (2020) Standalone1
User study with 12 devel-
opers

MSRBot signi�cantly outperforms �nding
answers manually to developers questions.

Romero et al. (2020) Gitter
Design and implementa-
tion

GitterAns achieved an accuracy of 0.78 in
identifying technical questions

Murgia et al. (2016) Stack Over�ow User study
Developers had higher con�dence in results
provided by the “human” bot.

Cerezo et al. (2019) Discord
User study with 6 partici-
pants

Participants expected the bot to communi-
cate with them, rather than simply answer-
ing queries.

Paikari, Choi, et al. (2019) Slack
Design and implementa-
tion

Sayme was designed to operate proactively
and reactively.

Lin et al. (2016) Slack

Survey with (i) 53 develop-
ers that use Slack, and (ii)
51 developers that created
Slack bots

Bots support both technical and social activ-
ities in Slack.

A. M. Pinheiro et al.

(2019) and A. Pinheiro
et al. (2019)

Slack
Survey with 43 bot devel-
opers

Developers create bots to satisfy their per-
sonal needs, and solve problems in either
their workplace or daily life.

Dominic et al. (2020) Standalone1 Concept de�nition

The bot aim at improving newcomers’ expe-
rience by providing support not only during
their �rst contribution, but by acting as an
agent to engage them to the project.

1
According to C. R. Lebeuf (2018), standalone is when a bot is untied to a speci�c platform.

Table 2.1: Summary of studies on bots in Software Engineering
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2.4.2 Bots Supporting Pull Requests on GitHub
On GitHub, software bots are commonly adopted to automate a variety of prede�ned

tasks, such as ensuring license agreement signing, reporting continuous integration failures,
reviewing code and pull requests (Wessel, Souza, et al., 2018; Peng, Yoo, et al., 2018),
triaging issues (Wessel, I. Steinmacher, et al., 2019), repairing bugs (Urli et al., 2018;
Monperrus, 2019), refactoring source code (Wyrich and Bogner, 2019), recommending
tools (Brown and Parnin, 2019), updating dependencies (Mirhosseini and Parnin, 2017),
and �xing static analysis violations (Carvalho et al., 2020). Moreover, several studies
have been conducted to design and integrate bots into GitHub, helping developers gain
productivity.

Urli et al. (2018) introduced Repairnator, a program repair bot that constantly monitors
bugs during Continuous Integration (CI), and then tries to �x them by submitting a pull
request. In the �rst round of experiments, the bot created pull requests for 15 di�erent
bugs using data from 11, 523 test failures of 1, 609 open-source software projects hosted on
GitHub. Subsequently, the bot was enhanced to be human-competitive, meaning it aims to
produce high-quality pull requests before humans. Monperrus, Urli, et al. (2018) reported
that Repairnator was able to produce 5 pull requests that were successfully merged by
the project’s maintainers. Thus, Repairnator was able to �x bugs, that were considered of
good quality, before humans themselves.

Although Urli et al. (2018) focus on repair bots, Tonder and Goues (2019) takes it
to an even higher-level by extracting discussions from a particular language or repair
techniques. Moreover, they discussed six principles for engineering repair bots based
on syntax, semantics, and integration. Tonder and Goues (2019) express that the bot’s
e�ectiveness depends on its successful integration with developers’ work�ow.

Similar to previous studies, Wyrich and Bogner (2019) proposed the Refactoring-Bot,
a bot that automatically refactors the code to remove code smells. This bot was designed
to act autonomously, integrating into the natural work�ow of the development team.
After proposing code changes, the bot integrates them by submitting a pull request for
maintainers to review. It is also possible to communicate with it through comments in the
pull requests, allowing the maintainer to make small corrections to the code refactoring
without having to switch to the development environment. Basically, Refactoring-Bot aims
to eliminate the need for developers to manually �nd and correct code smells.

Bots have also been explored to improve tool adoption in software engineering. For
example, Brown and Parnin (2019), proposed the tool-recommender-bot, a bot that pro-
vides tool recommendations to software developers. Initially, the bot only recommends
static analysis tools. tool-recommender-bot automatically con�gures a project to use this
tool and then submits a pull request with a generic message explaining how it works,
as shown in Figure 2.3. Brown and Parnin (2019) applied tool-recommender-bot in real
projects for evaluation purposes. Only two pull requests out of 52 recommendations were
accepted. According to Brown and Parnin (2019), bots still need to �nd ways to interact
with humans and handle all associated social and cognitive problems.

To reduce both development and maintenance e�orts of redundant contributions, Ren
et al. (2019) designed an approach to identify duplicated code changes in forks early. This
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Figure 2.3: Example of recommendation from tool-recommender-bot (Brown and Parnin, 2019)

approach extracts similarities between code changes, and builds a machine learning model
to predict redundancies. Ren et al. (2019) envision that this approach can be implemented
as a bot to support developers in two scenarios: (i) helping project maintainers to reduce
their workload by monitoring incoming pull requests, and (ii) helping contributors to
detect redundant development.

To integrate static analysis tools into developers’ work�ows, Carvalho et al. (2020)
implemented a bot-based infrastructure. The proposed infrastructure, called the C-3PR bot,
automatically proposes �xes to static analysis violations using pull requests. To evaluate
the bot, Carvalho et al. (2020) monitored the bot activity in an industrial setting for a
period of 8 months. They observed that, on average, the bot’s pull requests are evaluated
faster than pull requests created by humans. As a result of a focal group, the authors found
that the C-3PR bot is e�cient, reliable, and useful.

Unlike previous studies, Mirhosseini and Parnin (2017) analyzed 7, 470 GitHub
projects to understand whether badges, such as David-DM

6, or automated pull requests
submitted by the greenkeeper bot7 actually help maintainers to update outdated depen-
dencies. Figure 2.4 shows an example of pull requests created by greenkeeper for updating
speci�c dependencies. The results suggest that the greenkeeper bot can encourage project
maintainers to update dependencies. On average, projects that used greenkeeper updated
1.6 times more than projects that did not use any tools. Although pull request noti�cations
are useful, maintainers are often overwhelmed by noti�cations: only a third of pull requests
were merged into the codebase.

Peng and Ma (2019) conducted a case study on how developers perceive and work
with mention bot, which was developed by Facebook. Once a pull request is created, this

6 https://david-dm.org
7 https://greenkeeper.io

https://david-dm.org
https://greenkeeper.io
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Figure 2.4: Automated pull request created by greenkeeper.io. (Mirhosseini and Parnin, 2017)

bot adds a recommendation as shown in Figure 2.5. Peng and Ma (2019) employed a mixed-
method approach to investigate the usefulness of mention bot. First, they compared the
pull requests before and after bot adoption. Then, they conducted a survey that involved
contributors, reviewers, and project owners. The results show that even mention bot has
saved developers’ e�orts; di�erent user groups have di�erent requirements for the bot. For
example, project owners require simplicity and stability, contributors require transparency,
and reviewers require selectivity. Additionally, results also show that developers are
bothered with several review noti�cations during heavy workload.

Figure 2.5: An example of the mention bot comments. (Peng and Ma, 2019)

There are few approaches proposed to detect software bots on GitHub. For example,
Dey et al. (2020) proposed BIMAN, an approach to detect software bots that commit
code using commits meta-data (e.g., �les modi�ed by the commit). BIMAN achieved an
AUC-ROC with 0.9 when it is evaluated in a dataset containing 461 bots. Golzadeh et al.

(2021) proposed BoDeGHa, an approach to detect software bots in GitHub issues and pull
requests comments based on their comments-related features (e.g., repetitive comment
patterns). The authors evaluated the proposed approach on 5000 GitHub accounts. The
results show that BoDeGHa achieved an F1-score of 0.98.

To help researchers integrate their new techniques into software development,
Beschastnikh et al. (2017) envisioned the concept of an analysis bot platform called
Mediam. The aim of Mediam is to help researchers upload their bots to the platform, and
allow multiple developers to run it in GitHub, which will generate reports for feedback.
Beschastnikh et al. (2017) envision bots being easily developed and deployed, allowing
quick access to new methods developed by researchers. To avoid overwhelming developers,
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Mediam is responsible for deciding which noti�cations will be sent.

Table 2.2 summarizes the studies of bots on Github. Although these preliminary works
focus on designing bots to be integrated into the GitHub work�ow, little is known about
the challenges they impose from the maintainers’ and contributors’ perspectives.

Study Bot type Study type Main Findings

Urli et al. (2018), Mon-
perrus, Urli, et al. (2018),
and Monperrus, Urli, et

al. (2019)

Repair bot
Design, Implementation
and Empirical evaluation

Repairnator bot demonstrated program
repair can be human-competitive: high-
quality pull requests delivered before hu-
mans themselves found bugs.

Tonder and Goues (2019) Repair bot Design
Bot e�ectiveness depends on success-
ful integration with human processes of
software development.

Wyrich and Bogner
(2019)

Code Refactoring bot
Design and Implementa-
tion

Refactoring-bot does not interrupt the de-
velopers’ work�ow, �xing code smells
through pull requests.

Brown and Parnin (2019) Recommendation bot
Design, Implementation
and Empirical evaluation

Bots with simple technical knowledge
alone are ine�ective in in�uencing hu-
man behavior.

Ren et al. (2019)
Duplicate Development
Detection bot

Design
Detecting duplicate development by us-
ing a bot could save contributors’ and
maintainers’ e�orts.

Mirhosseini and Parnin
(2017)

Dependency Update bot Case Study
Dependency update bots, such as green-
keeper, can encourage project maintain-
ers to update dependencies.

Peng, Yoo, et al. (2018)
and Peng and Ma (2019)

Mention Review bot Case Study
Simplicity, stability, transparency and se-
lectivity are critical to the user experi-
ences regarding mention bot.

Beschastnikh et al., 2017 Analysis bot Design
Implementing the SE research solution
as a bot have the potential to accelerate
adoption by practitioners.

Carvalho et al., 2020 Static Analysis bot
Design and Implementa-
tion

A bot-based infrastructure could miti-
gate some challenges that hinder the
wide adoption of static analysis tools.

Dey et al. (2020) Commit bots Case Study BIMAN achieved an AUC-ROC with 0.9

Golzadeh et al. (2021) Issue and PR bots Case Study
BoDeGHa achieved an F1-score of 0.98
detecting bot accounts

Table 2.2: Summary of studies regarding bots on GitHub

2.5 Final Considerations
In this chapter, we presented a historical perspective of software bots. Additionally,

we proposed a de�nition of software bots on GitHub based on how researchers and
practitioners have de�ned bots. In summary, we de�ne GitHub bot as a speci�c category of
software bot: a task-oriented bot, responsible for automating well-de�ned tasks on GitHub
repositories. Similarly to human developers, these bots have their own user pro�le and
interact through comments on pull requests.

The emergence of bot activity all over the OSS community on GitHub is an indication
of the growing importance of these new team members for automating activities around
pull requests. Despite this widespread adoption, bots are bothering both contributors and
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maintainers. Considering this, we aim to raise speci�c and actual interaction problems
introduced by bots around pull requests, with an understanding of their context, and
consequences. Ultimately, we aim to give support to mitigate some of these problems.

We also described the current state of bots supporting software development activities.
Software bots on GitHub are di�erent from those found supporting development activities
in general. While GitHub bots automate speci�c tasks on pull requests, interacting with
developers through comments, software engineering bots focus on answering developers’
questions and are generally integrated into communication platforms.

Certain bots have been studied in detail, revealing challenges and limitations of their
interventions in pull requests. For example, while analyzing the tool-recommender-bot,
Brown and Parnin (2019) report that bots still need to overcome problems such as no-
ti�cation workload. Mirhosseini and Parnin (2017) analyzed the greenkeeper bot and
found that maintainers were often overwhelmed by noti�cations and only a third of the
bots’ pull requests were merged into the codebase. Peng and Ma (2019) conducted a case
study on how developers perceive and work with mention bot. The results show that this
bot has saved developers’ e�orts; however, it may not meet the diverse needs of all users.
For example, while project owners require simplicity and stability, contributors require
transparency, and reviewers require selectivity. Despite its potential bene�ts, results also
show that developers can be bothered by frequent review noti�cations when dealing with
a heavy workload.

Although several bots have been proposed, relatively little has been done to evaluate the
state of practice. Furthermore, although some studies focus on designing and evaluating bot
interactions, they do not draw attention to potential problems introduced by these bots at
large. According to Brown and Parnin (2019), bots still need to enhance their interaction
with humans. Responding to this gap, we complement the �ndings from previous works
by delving deeper into the e�ects and challenges that bots bring to interactions on social
coding platforms. This dissertation takes a closer look at how practitioners interact with
bots and what challenges they face. Also complementing the previous literature, we discuss
how noise is characterized in terms of its impacts and how developers have attempted to
handle it.

In the following chapter, we describe our exploratory study dedicated to identifying
the e�ects of adopting bots open-source projects’ to pull requests.
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Chapter 3

E�ects of Adopting Bots on Pull
Requests

To understand how the dynamics of GitHub project pull requests change following
the adoption of bots, we investigate several activity indicators changes. We employed a
regression discontinuity design on software projects from GitHub. More speci�cally, we
used a mixed-methods approach (Easterbrook et al., 2008) with a sequential explanatory
strategy (Creswell, 2003), combining data analysis of GitHub data with semi-structured
interviews conducted with open-source developers. We used a Regression Discontinuity

Design (RDD) (Thistlethwaite and D. T. Campbell, 1960) to model the e�ects of code
review bot adoption across 1,194 OSS projects hosted on GitHub. Afterwards, we conducted
semi-structured interviews with 12 practitioners.

The results presented in this Chapter were partially published in di�erent venues.
The exploratory case study and the statistical analysis of code review bots e�ects were
published at the 36th International Conference on Software Maintenance and Evolution
(ICSME) (Wessel, Serebrenik, I. S. Wiese, et al., 2020), and the extension that attempted
to investigate the maintainers perceptions was submitted to the Special Issue of ICSME
2020 of the Empirical Software Engineering (EMSE) (Wessel, Serebrenik, I. Wiese, I.
Steinmacher, and Marco A Gerosa, 2021). The reader may refer to these publications
for additional details on each study.

3.1 Exploratory Case Study
As little is known about the e�ects of code review bots’ adoption in the dynamics of

pull requests, we conducted an exploratory case study (Runeson and Höst, 2009; Yin,
2003) to formulate hypotheses to further investigate in our main study.

To carry out our exploratory case study, we selected two projects that we were aware of
that used code review bots for at least a one year: the Julia programming language project1

1 https://github.com/JuliaLang/julia
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and CakePHP,2 a web development framework for PHP. Both projects have popular and
active repositories—Julia has more than 26.1k stars, 3.8k forks, 17k pull requests, and
46.4k commits; while CakePHP has more than 8.1k stars, 3.4k forks, 8.6k pull requests,
40.9k commits, and is used by 10k projects. Both projects adopt a code review bot named
Codecov, which posted the �rst comments on pull requests to the Julia project in July 2016
and CakePHP in April 2016.

After selecting the projects, we analyzed data from one year before and one year after
bot adoption, using the data available in the GHTorrent dataset (Gousios and Spinellis,
2012). During this time frame, the only bot adopted by Julia and CakePHP was the Codecov
bot. Similar to previous work (Zhao et al., 2017), we exclude 30 days around the bot’s
adoption to avoid the in�uence of instability caused during this period. Afterward, we
aggregated individual pull request data into monthly periods, considering 12 months
before and after the bot’s introduction. We choose the month time frame based on previous
literature (Zhao et al., 2017; David Kavaler et al., 2019; Cassee et al., 2020). All metrics
were aggregated based on the month of the pull request being closed/merged.

We considered the eight activity indicators:

Merged/non-merged pull requests: the number of monthly contributions (pull requests)
that have been merged, or closed but not merged into the project, computed over all closed
pull requests in each time frame.

Comments on merged/non-merged pull requests: the median number of monthly
comments—excluding bot comments—computed over all merged and non-merged pull
requests in each time frame. We used the median because the distribution is skewed.

Time-to-merge/time-to-close pull requests: the median of monthly pull request latency
(in hours), computed as the di�erence between the time when the pull request was closed
and the time when it was opened. The median is computed using all merged and non-
merged pull requests in each time frame. We used the median because the distribution is
skewed.

Commits of merged/non-merged pull requests: the median of monthly commits com-
puted over all merged and non-merged pull requests in each time frame. We use the median
because the distribution is skewed.

We ran statistical tests to compare the activity indicators distributions before and
after the bot adoption. As the sample is small, and there is no critical mass of data points
around the bot’s introduction, we used the non-parametric Mann-Whitney-Wilcoxon
test (Wilks, 2011). In this context, the null hypothesis (H0) is that the distributions pre- and
post-adoption are the same, and the alternative hypothesis (H1) is that these distributions
di�er. We also used Cli�’s Delta (Romano et al., 2006) to quantify the di�erence between
these groups of observations beyond p-value interpretation. Moreover, we inspected the
monthly distribution of each metric to search for indications of change.

As aforementioned, the case studies helped us to formulate hypotheses for the main
study, which comprised more than one thousand projects. We formulated hypotheses

2 https://github.com/cakephp/cakephp
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whenever we observed changes in the indicators for at least one of the two projects we
analyzed in the case study.

3.1.1 Case Study Results
In the following, we discuss the trends in project activities after bot adoption. We report

the results considering the studied pull request activities: number of merged and non-
merged pull requests, median of pull request comments, time-to-merge and time-to-close
pull requests, and median of pull request commits.

Trends in the number of Merged and Non-merged Pull Requests
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Figure 3.1: Monthly merged and non-merged pull requests.

The number of merged pull requests increased for both projects (Julia: p-value 0.0003,
� = −0.87; CakePHP: p-value 0.001, � = −0.76), whereas the non-merged pull requests
decreased for both projects (Julia: p-value 0.00007, � = 0.87; CakePHP: p-value 0.00008,
� = 0.95). Figure 3.1 shows the monthly number of merged and non-merged pull requests,
top and bottom respectively, before and after bot adoption for both projects. Based on
these �ndings, we hypothesize that:

H1.1 The number of monthly merged pull requests increases a�er the introduc-
tion of a code review bot.

H1.2 The number of monthly non-merged pull requests decreases a�er the in-
troduction of a code review bot.

Trends in the median of pull request comments

Figure 3.2 shows the monthly median of comments on merged and non-merged pull
requests, respectively. CakePHP showed statistically signi�cant di�erences between pre-
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Figure 3.2: Monthly comments on merged and non-merged pull requests.

and post-adoption distributions. The number of comments increased for merged pull
requests (p-value=0.01, � = −0.56) and also for non-merged ones (p-value=0.03, � = −0.50)
with a large e�ect size. Thus, we hypothesize that:

H2.1 The adoption of code review bots is associated with an increase in the
monthly number of comments for merged pull requests.

H2.2 The number of monthly comments on non-merged pull requests increases
a�er the adoption of a code review bot.

Trends in the time to close pull request comments
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Figure 3.3: Monthly median time to merge and reject pull requests.
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The median time to merge pull requests increased for both projects (Julia: p-value
0.0003, � = −1.00; CakePHP: p-value 0.000001, � = −0.98). Considering non-merged pull
requests, the di�erence between pre- and post-adoption is statistically signi�cant only for
Julia. For this project, the median time to close pull requests increased (p-value 0.00007)
with a large e�ect size (� = −0.65). The distribution can be seen in Figure 3.3. Therefore,
we hypothesize that:

H3.1 There is an increase in the monthly time to merge pull requests a�er the
introduction of code review bots.

H3.2 There is an increase in the monthly time to reject pull requests a�er the
adoption of a code review bot.

Trends in the median of pull request commits

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ●

● ●

●

● ●1

2

3

4

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Month index

M
ed

ia
n 

of
 c

om
m

its
 

(m
er

ge
d 

P
R

s)

●

● ●

● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ●

● ●

●

●

●

●● ● ●

●

●

● ●

● ●

●

● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

1

2

3

4

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Month index

M
ed

ia
n 

of
 c

om
m

its
 

(n
on

−
m

er
ge

d 
P

R
s)

Project ● ●CakePHP Julia

Figure 3.4: Monthly commits on merged and non-merged pull requests.

Investigating the number of pull request commits per month (see Figure 3.4), we note
that the medians before the adoption are quite stable, especially for merged pull requests.
In comparison, after adoption we observe more variance. The di�erence is statistically
signi�cant only for CakePHP, for which the number of pull request commits increased
for merged pull requests (p-value=0.002, � = −0.58) and for non-merged pull requests
(p-value=0.002, � = −0.69) with a large e�ect size. Based on this, we posit:

H4.1 There is an increase in the monthly number of commits for merged pull
requests a�er code review bot adoption.

H4.2 There is an increase in the monthly number of commits for non-merged
pull requests a�er code review bot adoption.
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Summary of the Case Study. We observe statistically signi�cant di�erences for
all four activity indicators we investigated in at least one of the two projects. Based
on these observations, we formulated hypotheses to be further investigated in our
main study, comprising a large number of projects, and employed the regression
discontinuity design.

3.2 Main Study Design
In this section, we describe our research questions (Section 3.2.1), the statistical ap-

proach and data collection procedures (Section 3.2.2), and the qualitative approach (Sec-
tion 3.2.3).

3.2.1 Research Questions
The main goal of this study is to investigate how and for what reasons, if any, the

adoption of code review bots a�ects the dynamics of GitHub project pull requests. To
achieve this goal, we investigated the following research questions:

RQ1. How do pull request activities change after a code review bot is adopted in a

project?

We investigate changes in project activity indicators, such as the number of pull
requests merged and non-merged, number of comments, the time to close pull requests,
and the number of commits per pull request. Using time series analysis, we account for
the longitudinal e�ects of bot adoption. We also go one step further, exploring a large
sample of open-source projects and focusing on understanding the e�ects of a speci�c bot
category.

RQ2. How could the change in pull request activities be explained?

Besides understanding the change incurred by bot adoption, we explore why it happens.
To do so, we interviewed a set of open-source developers who actually have been using
these bots.

Figure 3.5 illustrates an overview of the steps taken to address the research questions.
Next, we explain each step in order to justify the study design decisions.

3.2.2 Stage 1—Statistical Approach
Considering the hypotheses formulated in the case study, in our main study we em-

ployed time series analysis to account for the longitudinal e�ects of bot adoption. We
employed Regression Discontinuity Design (RDD) (Thistlethwaite and D. T. Campbell,
1960; Imbens and Lemieux, 2008), which has been applied in the context of software
engineering in the past (Zhao et al., 2017; Cassee et al., 2020). RDD is a technique used
to model the extent of a discontinuity at the moment of intervention and long after the
intervention. The technique is based on the assumption that if the intervention does not
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Figure 3.5: Main Research Design Overview.

a�ect the outcome, there would be no discontinuity, and the outcome would be continuous
over time (Cook and D. Campbell, 1979). The statistical model behind RDD is

yi = � + � ⋅ timei + 
 ⋅ interventioni +
� ⋅ time_after_interventioni + � ⋅ controlsi + "i

where i indicates the observations for a given project. To model the passage of time as well
as the bot introduction, we include three additional variables: time, time after intervention,
and intervention. The time variable is measured as months at the time j from the start to
the end of our observation period for each project (24 months). The intervention variable
is a binary value used to indicate whether the time j occurs before (intervention = 0) or
after (intervention = 1) adoption event. The time_after_intervention variable counts the
number of months at time j since the bot adoption, and the variable is set up to 0 before
adoption.

The controlsi variables enable the analysis of bot adoption e�ects, rather than con-
founding the e�ects that in�uence the dependent variables. For observations before the
intervention, holding controls constant, the resulting regression line has a slope of � , and
after the intervention � +� . The size of the intervention e�ect is measured as the di�erence
equal to 
 between the two regression values of yi at the moment of the intervention.

Considering that we are interested in the e�ects of code review bots on the monthly
trend of the number of pull requests, number of comments, time-to-close pull requests,
and number of commits over a pull request, and all these for both merged and non-merged
pull requests, we �tted eight models (2 cases x 4 variables). To balance false-positives
and false-negatives, we report the corrected p-values after applying multiple corrections
using the method of Benjamini and Hochberg (Benjamini and Hochberg, 1995). We
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implemented the RDD models as a mixed-e�ects linear regression using the R package
lmerTest (Kuznetsova et al., 2017).

To capture project-to-project and language-to-language variability, we modeled project

name and programming language as random e�ects (Gałecki and Burzykowski, 2013).
By modeling these features as random e�ects, we can account for and explain di�erent
behaviors observed across projects or programming languages (Zhao et al., 2017). We
evaluate the model �t using marginal (R2

m) and conditional (R2
c ) scores, as described by

Nakagawa and Schielzeth (Nakagawa and Schielzeth, 2013). The R2
m can be interpreted

as the variance explained by the �xed e�ects alone, and R2
c as the variance explained by

the �xed and random e�ects together.

In mixed-e�ects regression, the variables used to model the intervention along with
the other �xed e�ects are aggregated across all projects, resulting in coe�cients useful for
interpretation. The interpretation of these regression coe�cients supports the discussion of
the intervention and its e�ects, if any. Thus, we report the signi�cant coe�cients (p < 0.05)
in the regression as well as their variance, obtained using ANOVA. In addition, we log

transform the �xed e�ects and dependent variables that have high variance (Sheather,
2009). We also account for multicollinearity, excluding any �xed e�ects for which the
variance in�ation factor (VIF) is higher than 5 (Sheather, 2009).

Selection of Candidate Projects To identify open-source software projects hosted on
GitHub that at some point had adopted a code review bot, we queried the GHTorrent
dataset (Gousios and Spinellis, 2012) and �ltered projects in which at least one pull request
comment was made by one of the code review bots identi�ed by Wessel et al. (Wessel,
Souza, et al., 2018). Following the method used by Zhao et al. (Zhao et al., 2017) to assemble
a time series, we considered only those projects that had been active for at least one year
before and one year after the bot adoption. We found 4, 767 projects that adopted at least
one of the code review bots. For each project, we collected data on all its merged and
non-merged pull requests.

Data Collection and Aggregation Similar to the exploratory case study (see Sec-
tion 3.1), we aggregated the project data in monthly time frames and collected the four
variables we expected to be in�uenced by the introduction of the bot: number of merged
and non-merged pull requests, median number of comments, median time-to-close pull
requests, and median number of commits. All these variables were computed over pull
requests that have been merged and non-merged in a time frame.

We also collected six control variables, using the GHTorrent dataset (Gousios and
Spinellis, 2012):

Project name: the name of the project, used to identify the project on GitHub. We ac-
counted for the fact that di�erent projects can lead to di�erent contribution patterns. We
used the project name as a random e�ect.

Programming language: the primary project programming language as automatically
determined and provided by GitHub. We considered that projects with di�erent program-
ming languages can lead to di�erent activities and contribution patterns (Zhao et al., 2017;
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Cassee et al., 2020). We used programming language as a random e�ect.

Time since the �rst pull request: in months, computed since the earliest recorded pull
request in the entire project history. We use this to capture the di�erence in adopting the bot
earlier or later in the project life cycle, after the projects started to use pull requests (Zhao
et al., 2017; Cassee et al., 2020).

Total number of pull request authors: as a proxy for the size of the project community,
we counted how many contributors submitted pull requests to the project.

Total number of commits: as a proxy for the activity level of a project, we computed
the total number of commits.

Number of pull requests opened: the number of contributions (pull requests) received
per month by the project. We expected that projects with a high number of contributions
also observe a high number of comments, latency, commits, and merged and non-merged
contributions.

Bot name GitHub user # of projects

Ansible’s issue bot ansibot 1
Elastic Machine elasticmachine 3
Codecov codecov-io 460
Coveralls coveralls 730

Total of 1, 194 under study

Table 3.1: An overview of the studied bots

Filtering the �nal dataset After excluding the period of instability (30 days around the
adoption), we inspected the dataset and found 223 projects with no comments authored
by any of the studied bots. We manually checked 30% of these cases and concluded that
some projects only added the bot for a testing period and then disabled it. We removed
these 223 projects from our dataset.

We also checked the activity level of the candidate projects, since many projects
on GitHub are inactive (Gousios, Pinzger, et al., 2014b). We excluded from our dataset
projects without at least a six month period of consistent pull request activity during the
one-year period before and after bot adoption. After applying this �lter, a set of 1, 740
GitHub software projects remained. To ensure that we observed the e�ects of each bot
separately, we also excluded from our dataset 78 projects that adopted more than one of
the studied bots and 196 projects that used non-code review bots. In addition, we checked
the activity level of the bots on the candidate projects. We excluded 272 projects that had
not received any comments during the previous four months. After applying all �lters,
1, 194 GitHub software projects remained. Table 3.1 shows the number of projects per bot.
All of these four bots perform similar tasks on pull requests—providing comments on pull
requests about code coverage.
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3.2.3 Stage 2—Qualitative approach
As aforementioned, we also applied a qualitative approach aimed to understand the

e�ects evidenced by the statistical approach from the practitioners’ perspective. In the
following, we describe the participants recruitment, semi-structured interview procedures,
and the qualitative analysis.

Participants recruitment In this study, we employed several strategies to recruit par-
ticipants. First, we advertised the interview on social media platforms frequently used by
developers (Singer et al., 2014; Storey, Treude, et al., 2010; Aniche et al., 2018), including
Twitter, Facebook, and Reddit. We also manually searched the projects that were part of the
statistical analysis for pull requests explicitly installing or (re)con�guring the analyzed bots.
We added a comment on some of these pull requests to invite the pull request author to the
interview. We also sent emails to personal contacts who we knew had experience with these
bots. In addition, we asked participants to refer us to other quali�ed participants.

We continued recruiting participants till we came to an agreement that the last three
interviews had not provided any new �ndings. According to Strauss and Corbin (A.
Strauss and Juliet M Corbin, 1997), sampling can be discontinued once the data collection
no longer unveils new information. Additionally, the size of our participant set is in line
with the anthropology literature, which mentions that a set of 10-20 knowledgeable
people is su�cient to uncover and understand the core categories in any study of lived
experience (Bernard, 2017).

Participants Demographics In total, we interviewed 12 open-source developers expe-
rienced with code review bots—identi�ed here as P1–P12. Out of these twelve participants,
one is an open-source maintainer, two are contributors, and the other nine are both
maintainers and contributors. In addition, participants are geographically distributed
across Europe (≃50%), North America (≃25%), and South America (≃25%). Snowballing
was the origin of �ve of our participants. Personal contacts was the origin of four of
our participants. The advertisements on social media were the origin of the other three
interviews. Table 4.1 presents the demographic information of the interviewees.

Participant OSS Experience Experienced with bots as Location Gender
ID (years) Maintainer Contributor

P1 4-5 3 North America Man
P2 Over 10 3 3 North America Man
P3 4-5 3 3 Europe Man
P4 3 3 3 Europe Man
P5 4-5 3 3 Europe Woman
P6 Over 10 3 3 North America Man
P7 5-10 3 3 Europe Man
P8 4-5 3 3 Europe Man
P9 1 3 Europe Man
P10 4-5 3 3 South America Man
P11 4-5 3 South America Man
P12 Over 10 3 South America Man

Table 3.2: Demographics of interviewees
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Semi-structured interviews

We conducted semi-structured interviews, comprising open- and closed-ended ques-
tions designed to elicit foreseen and unexpected information and enable interviewers
to explore interesting topics that emerged during the interview (Hove and Anda, 2005).
Before each interview, we shared a consent form with the participants asking for their
agreement. By participants’ requests, one interview (P11) was conducted via email. The
other eleven interviews were conducted via video calls. The participants received a 25-
dollar gift card as a token of appreciation for their time.

We started the interviews with a short explanation of the research objectives and guide-
lines, followed by demographic questions to capture the familiarity of the interviewees
with open-source development and code review bots. We then described to the interviewee
the study we conducted and the main �ndings from the statistical approach and asked the
developers to conjecture about the reasons for the e�ects we observed:

Q1. After adopting a code review bot there are more merged pull requests, less commu-
nication between developers, fewer rejected pull requests, and faster rejections. We
are intrigued about these e�ects and would like to hear thoughts from developers
who actually use these bots. Could you conjecture the reasons why this happens?

We follow-up this question with more speci�c questions when participants have
not mentioned reasons for any of the four observed e�ects. Afterwards, we asked two
additional questions:

Q2. Have you observed these e�ects in your own project?

Q3. What other e�ects did you observe in your project and attribute to the introduction
of the code review bot?

The detailed interview script is publicly available3. Each interview was conducted
remotely and lasted, on average, 35 minutes.

Qualitative analysis of interviews

Each interview recording was transcribed by the �rst author of this paper. We then
analyzed the interview transcripts by applying open and axial coding procedures (A. L.
Strauss and J. M. Corbin, 1998; Stol et al., 2016) throughout multiple rounds of analysis.
We started by applying open coding, whereby we identi�ed the reasons for bots’ e�ects. To
do so, the author of this dissertation conducted a preliminary analysis, identifying the main
codes. Then, the author discussed with two other experienced researchers the coding in
weekly hands-on meetings. These discussions aimed to increase the reliability of the results
and mitigate bias (Patton, 2014). Afterwards, the author further analyzed and revised
the interviews to identify relationships between concepts that emerged from the open
coding analysis (axial coding). During this process, we employed a constant comparison
method (Glaser and Anselm L Strauss, 2017), wherein we continuously compared the
results from one interview with those obtained from the previous ones.

For con�dentiality reasons, we do not share the interview transcripts. However, we
made our complete code book publicly available. The code book includes the all code
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names, descriptions, and examples of quotes.

3.3 Main Study Results
In the following, we report the results of our study by research question.

3.3.1 E�ects of Code Review Bot Adoption (RQ1)
In this section, we discuss the e�ects of code review bot adoption on project activities

along four dimensions: (i) accepted and rejected pull requests, (ii) communication, (iii) pull
request resolution e�ciency, and (iv) modi�cation e�ort.

E�ects in Merged and Non-merged Pull Requests

We start by investigating the e�ects of bot adoption on the number of merged and
non-merged pull requests. From the exploratory case study, we hypothesized that the
use of code review bots is associated with an increase in the number of monthly merged
pull requests and a decrease in the number of monthly non-merged pull requests. We
�t two mixed-e�ect RDD models, as described in Section 3.2.2. For these models, the
number of merged/non-merged pull requests per month is the dependent variable. Table 3.3
summarizes the results of these two RDD models. In addition to the model coe�cients,
the table also shows the SS, with a variance explained for each variable.

Merged Pull Requests Non-merged Pull Requests

Coe�cients SS Coe�cients SS

Intercept -0.262*** -0.574***
TimeSinceFirstPullRequest 0.00004** 4.3 -0.0001*** 2.4
log(TotalPullRequestAuthors) -0.094*** 171.8 0.086*** 775.7
log(TotalCommits) 0.042*** 484.0 0.068*** 428.6
log(OpenedPullRequests) 0.494*** 8227.1 0.388*** 4958.5
log(PullRequestComments) 0.433*** 2954.3 0.389*** 2341.0
log(PullRequestCommits) 0.272*** 721.0 0.165*** 255.5
time 0.004*** 203.2 -0.004*** 376.1
interventionTrue 0.095*** 16.8 -0.163*** 48.4
time_after_intervention 0.004** 1.7 -0.004** 1.6

Marginal R2 0.68 0.67
Conditional R2 0.75 0.74

*** p < 0.001, ** p < 0.01, * p < 0.05. SS stands for “Sum of Squares”.

Table 3.3: The E�ects of Code Review bots on PRs. The response is log(number of merged/non-
merged PRs) per month.

3 https://doi.org/10.5281/zenodo.4618498
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Analyzing the model for merged pull requests, we found that the �xed-e�ects part
�ts the data well (R2

m = 0.68). However, considering R2
c = 0.75, variability also appears

from project-to-project and language-to-language. Among the �xed e�ects, we observe
that the number of monthly pull requests explains most of the variability in the model.
As expected, this indicates that projects receiving more contributions tend to have more
merged pull requests, with other variables held constant.

Furthermore, the statistical signi�cance of the time series predictors indicates that the
adoption of code review bots a�ected the trend in the number of merged pull requests.
We note an increasing trend before adoption; a statistically signi�cant discontinuity at
adoption; and a positive trend after adoption that indicates that the number of merged
pull requests increased even faster.

Similar to the previous model, the �xed-e�ect part of the non-merged pull requests
model �ts the data well (R2

m = 0.67), even though a considerable amount of variability is
explained by random e�ects (R2

c = 0.74). We note similar results on �xed e�ects: projects
receiving more contributions tend to have more non-merged pull requests. All time-series
predictors for this model are statistically signi�cant, showing a measurable e�ect of the
code review bot’s adoption on the time to review and accept a pull request. We note a
decreasing trend before adoption, a statistically signi�cant discontinuity at the adoption
time, and a slight acceleration after adoption in the decreasing time trend seen before
adoption.

Therefore, based on models for merged and non-merged pull requests, we con�rm
both H1.1 and H1.2.

E�ects in Merged and Non-merged Pull Requests. Overall, there are more
monthly merged pull requests and fewer monthly non-merged pull requests after
adopting a code review bot.

E�ects on Developers’ Communication

In the exploratory case study, we hypothesized that bot adoption increases monthly
human communication on pull requests for both merged and non-merged pull requests.
To statistically investigate this, we �t one model to merged pull requests and another
to non-merged ones. The median of pull request comments per month is the dependent
variable, while number of monthly pull requests, median of time-to-close pull requests, and
median of pull request commits are independent variables. Table 3.4 shows the results of
the �tted models.

Considering the model of comments on merged pull requests, we found that the
model taking into account only �xed e�ects (R2

m = 0.50) �ts the data well. However,
there is also variability from the random e�ects (R2

c = 0.56). We observe that time-to-

close pull requests explains the largest amount of variability in the model, indicating that
communication during the pull request review is strongly associated with the time to
merge it. Regarding the bot e�ects, there is a discontinuity at adoption time, followed by a
statistically signi�cant decrease after the bot’s introduction.
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Merged Pull Requests Non-merged Pull Requests

Coe�cients SS Coe�cients SS

Intercept -0.096*** -0.123***
TimeSinceFirstPullRequest 0.00000 20.0 -0.00002* 24.4
log(TotalPullRequestAuthors) 0.053*** 163.6 0.069*** 621.1
log(TotalCommits) -0.014*** 36.6 -0.009** 106.0
log(OpenedPullRequests) 0.079*** 1002.8 0.072*** 1362.9
log(TimeToClosePullRequests) 0.093*** 3239.7 0.101*** 4615.5
log(PullRequestCommits) 0.093*** 55.0 0.123*** 119.4
time -0.001 1.0 -0.001 7.2
interventionTrue 0.023** 0.8 -0.025*** 1.1
time_after_intervention -0.002* 0.5 0.0001 0.0

Marginal R2 0.50 0.66
Conditional R2 0.56 0.70

*** p < 0.001, ** p < 0.01, * p < 0.05. SS stands for “Sum of Squares”.

Table 3.4: The E�ect of Code Review bots on Pull Request Comments. The response is log(median
of comments) per month.

As above, the model of non-merged pull requests �ts the data well (R2
m = 0.66) and there

is also variability explained by the random variables (R2
c = 0.70). This model also suggests

that communication during the pull request review is strongly associated with the time
to reject the pull request. Table 3.4 shows that the e�ect of bot adoption on non-merged
pull requests di�ers from the e�ect on merged ones. The statistical signi�cance of the
intervention coe�cient indicates that the adoption of code review bots slightly a�ected
communication; however, there is no bot e�ect in the long run.

Since our model for merged pull requests shows a decrease in the number of comments
after bot adoption, we rejected H2.1. Still, given that our model for non-merged pull requests
could not observe any statistically signi�cant bot e�ect as time passes, we cannot accept
H2.2.

E�ects in Communication. On average, there is less monthly communication on
merged pull requests after adopting a code review bot. However, the monthly commu-
nication on non-merged pull requests does not change as time passes.

E�ects in Pull Request Resolution E�ciency

In the exploratory case study, we found that the monthly time to close pull requests
increased after bot adoption. Next, we �tted two RDD models, for both merged and
non-merged pull requests, where median of time to close pull requests per month is the
dependent variable. The results are shown in Table 3.5.

Analyzing the results of the e�ect of code review bots on the latency to merge pull
requests, we found that combined �xed-and-random e�ects �t the data better than the
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Merged Pull Requests Non-merged Pull Requests

Coe�cients SS Coe�cients SS

Intercept 0.377** 0.221
TimeSinceFirstPullRequest 0.0002** 452 0.00001 891
log(TotalPullRequestAuthors) 0.208*** 2186 0.166*** 21320
log(TotalCommits) -0.145*** 824 -0.057** 4770
log(OpenedPullRequests) 0.120*** 34444 0.240*** 50376
log(PullRequestComments) 2.472*** 117571 3.326*** 176312
log(PullRequestCommits) 2.275*** 47117 1.721*** 26733
time 0.027*** 3007 0.012** 56
interventionTrue 0.256*** 128 -0.056 9
time_after_intervention 0.009 6 -0.028*** 66

Marginal R2 0.61 0.69
Conditional R2 0.67 0.72

*** p < 0.001, ** p < 0.01, * p < 0.05. SS stands for “Sum of Squares”.

Table 3.5: The E�ect of Code Review bots on time-to-close PRs. The response is log(median of time-
to-close PRs) per month.

�xed e�ects only (R2
c = 0.67 vs R2

m = 0.61). Although several variables a�ect the trends of
pull request latency, communication during the pull requests is responsible for most of
the variability in the data. This indicates the expected results: the more e�ort contributors
expend discussing the contribution, the more time the contribution takes to merge. The
number of commits also explains the amount of data variability, since a project with many
changes needs more time to review and merge them. Moreover, we observe an increasing
trend before adoption, followed by a statistically signi�cant discontinuity at adoption.
After adoption, however, there is no bot e�ect on the time to merge pull requests since the
time_after_intervention coe�cient is not statistically signi�cant.

Turning to the model of non-merged pull requests, we note that it �ts the data well
(R2

m = 0.69), and there is also a variability explained by the random e�ects (R2
c = 0.72). As

above, communication during the pull requests is responsible for most of the variability
encountered in the results. In this model, the number of received contributions is important
to explain variability in the data—projects with many contributions need more time to
review and reject them. The e�ect of bot adoption on the time spent to reject pull requests
di�ers from the previous model. Regarding the time series predictors, the model did not
detect any discontinuity at adoption time. However, the positive trend in the latency to
reject pull requests before bot adoption is reversed toward a decrease after adoption.

Thus, since we could not observe statistically signi�cant bot e�ects as time passes, we
cannot con�rm H3.1. Further, as the model of non-merged pull requests shows a decrease
in the monthly time to close pull requests, we reject H3.2.

E�ects in PR Resolution E�ciency. After adopting the code review bot, on average
less time is required from maintainers to review and reject pull requests. However, the
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time required to review and accept a pull request does not change after code review
bot adoption.

E�ects in Commits

Finally, we studied whether code review bot adoption a�ects the number of commits
made before and during pull request review. Our hypothesis is that the monthly number of
commits increases with the introduction of code review bots. Again, we �tted two models
for merged and non-merged pull requests, where the median of pull request commits per
month is the dependent variable. The results are shown in Table 3.6.

Merged Pull Requests Non-merged Pull Requests

Coe�cients SS Coe�cients SS

Intercept 0.358*** 0.063
TimeSinceFirstPullRequest 0.0001*** 0.30 0.00002 5.7
log(TotalPullRequestAuthors) -0.144*** 0.02 -0.058*** 202.2
log(TotalCommits) 0.017*** 74.04 0.028*** 171.9
log(OpenedPullRequests) 0.163*** 1513.60 0.125*** 1502.9
log(PullRequestComments) 0.520*** 2375.74 0.600*** 3306.3
time 0.001 138.60 -0.003** 8.7
interventionTrue 0.137*** 33.57 0.003 0.0
time_after_intervention 0.001 0.05 0.001 0.1

Marginal R2 0.34 0.42
Conditional R2 0.48 0.50

*** p < 0.001, ** p < 0.01, * p < 0.05. SS stands for “Sum of Squares”.

Table 3.6: The E�ect of Code review bots on Pull Request commits. The response is log(median of
Pull Request commits) per month.

Analyzing the model of commits on merged pull requests, we found that the combined
�xed-and-random e�ects (R2

c = 0.48) �t the data better than the �xed e�ects (R2
m = 0.34),

showing that most of the explained variability in the data is associated with project-
to-project and language-to-language variability, rather than with the �xed e�ects. The
statistical signi�cance of the intervention coe�cient indicates that the adoption of code
review bots a�ected the number of commits only at the moment of adoption. Additionally,
from Table 3.6, we can also observe that the number of pull request comments per month
explains most of the variability in the result. This result suggests that the more comments
there are, the more commits there will be, as discussed above.

Investigating the results of the non-merged pull request model, we found that the
model �ts the data well and that the random e�ects are again important in this regard. We
also observe from Table 3.6 that the adoption of a bot is not associated with the number
of commits on non-merged pull requests, since intervention and time_after_intervention

coe�cients are not statistically signi�cant.
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Based on models for merged and non-merged pull requests, we could not observe
statistically signi�cant e�ects of bot adoption. Therefore, we cannot con�rm both H4.1 and
H4.2.

E�ects in Commits. After adopting a code review bot, the monthly trend in the
median of pull request commits does not change for both merged and non-merged
pull requests.

3.3.2 Developers’ Perspective on the Reasons for the Observed
E�ects (RQ2)

As explained in Section 3.2.3, we presented to open-source developers the main �ndings
of our statistical approach: “After adopting a code review bot there are more merged pull re-

quests, less communication between developers, fewer rejected pull requests, and faster rejec-

tions.” We asked them to conjecture on the possible reasons for each of these results.

We grouped the participants’ answers into 5 categories, as can be seen in Table 3.7.
We associate one of the e�ects with its correspondent reasons whenever participants
explicitly mentioned this relationship. We also added a mark (3) to highlight which e�ects
are explained by each one of the reasons, according to the participants’ responses.

Reason #

Explains
More Fewer Fewer FasterMerged Comments Rejected RejectionsPRs PRs

More visibility and transparency
8 3 3 3 3

of the contribution state
More con�dence in the

8 3 3 3
process in place
Bot feedback changes developers’

8 3
discussion focus
Bot feedback pushes contributors

5 3 3
to take an action
Bot feedback perceived as noise 2 3

Table 3.7: Main reasons for the �ndings from the RDD models.

More visibility and transparency of the contribution state. Most of the participants
claimed that when a project has bots that provide detailed information on code quality
metrics, especially in the sense of coverage metrics, both maintainers and contributors can
more quickly gain a general idea of the quality of the contributions. As stated by P6: “bots

are able to raise visibility, both for the contributor and for the maintainer. They can make

it more clear more quickly the state of that contribution.” More than obtaining clarity on
the quality of the code, it is also easy for maintainers to verify whether the pull request
contributors will improve their contribution toward achieving acceptance. Thus, they
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conjecture that all bot e�ects we found during the statistical analysis might be explained
by this enhanced feedback given by the bot.

As soon as contributors submit their pull requests, the code review bot posts a detailed
comment regarding the code coverage. In the P7 experience, the “immediate feedback

of the quality of [code coverage] on the pull request” is closely related to the increasing
acceptance rate. If the pull request does not a�ect code coverage in a negative way, then
maintainers are able to “much more quickly judge whether or not it’s a reasonable request”
(P4). On the other side of the spectrum, if the pull requests fail the tests and decreases
the coverage, then the maintainers “will not bother with that pull request at all, and just

reject it” (P4). Also maintainers “are more inclined to directly reject the pull request” since
it does not respect the rules imposed by the project. In some cases, maintainers expect
that the contributor will take an action based on the bot comments, as explained by P6:
“if [contributors] are not following up and resolving the issue, it makes it more clear to the

maintainer that it’s not an acceptable contribution.”

Participants also recognize that these bots are usually “pretty good at explaining very

precisely” (P2) and not merely stating that “[maintainers] will not accept the pull request”
(P2) without further explanation. For example, if the coverage decreased, the bot will post
“your pull request dropped the test coverage from 95 to 94%. And these are the lines you edit

that are not covered. So, please add tests to cover these speci�c lines.” (P2), which according
to P2 is extremely useful for a contributor. According to P1, for example, the visibility of
the bot comments helps maintainers to make sure contributors understand why the pull
request has been rejected without the necessity of engaging in a long discussion: “now

the maintainer can just point at it and be like ‘you didn’t pass the status check, because you

didn’t write tests.’ It is more obvious”.

More con�dence in the process in place. According to the participants, one of the
reasons for more pull requests being merged after the code review bot introduction is that
these bots act as quality gatekeepers. For example, P1 mentioned that “by having other

metrics, like code coverage, to be able to say ‘Great! I know that at least a test has been written

for that line of code’, there is some sort of gatekeeping.” Besides the e�ect of merging more
pull requests, participants also mentioned another e�ect: “accepting code contributions

can be much, much faster” (P2). Basically, code review bots are used as a way to achieve
“automatic veri�cation” (P7). According to P7, if the bots con�rm that the change is correct,
then “the developer is more convinced that the change is useful and valid.” In the opposite
way, if the bots shows that the change is incorrect, the pull request will be rejected faster,
as it does not require “human interaction to arrive at this conclusion” (P7), which implies
less communication between developers. Furthermore, P4 also relates the con�dence in the
bot as one of the reasons for less communication between developers: the fact that there

is less communication between the contributors and maintainers might be an e�ect that we

can get a bit overdependent on bots, in the sense you trust them too much.” Therefore, since
maintainers trust the bots’ feedback, they “ask fewer questions” (P2).

Bot feedback changes developers’ discussion focus. Participants recurrently men-
tioned that bot comments enabled them to focus on other high-priority discussions, which
led to a decrease in the communication between the project maintainers and contributors
on pull requests. To some extent this decrease occurs since it’s not necessary anymore,
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because a lot of that [comments] are [already] handled automatically by the bots” (P4). In
P3’s experience, maintainers “talk more for new developers, to text them usually things like

‘Add new test please’ and then [maintainers] don’t have to [make] that kind of comment[]

anymore. That’s why there’s less communication.”

Moreover, when receiving non-human feedback, contributors are less likely to start
a broader discussion about the viability or necessity of software testing, as explained
by P2: “once you have set up the bots, and it is automated, people are less likely to argue

about it, which is just a nice e�ect of bots. Especially for bots that kind of point out failures.

I think it’s good to have that from bots, and not from people.” There are some exceptions,
however, when contributors experienced an increase in communication incurred by the
bot comments, especially when they do not understand how they might increase the
coverage rate. As posed by P9: In my experience, it causes a longer discussion, because then

I have to talk to the engineers like ‘hey, what kind of a test should I add such as coveralls

passes?”’

Bot feedback pushes contributors to take an action. Also related to the transparency
introduced by the bot comments, and in line with the idea of code review bots as quality
gatekeepers, these bots lead developers to take an action: “It gives me clear instructions

on what I have to do to resolve it. So, I’m very likely to act on it” (P2). These bots protect
developers from reducing the code’s coverage. Therefore, developers would consider
either closing the pull request, if it is not worth their time, or following up with the
necessary changes: you have this systematic check that says ‘okay, that’s not good.’ And then

the developer is saying, ‘okay, it won’t be accepted if I don’t provide the test’ ” (P3).

Bot feedback perceived as noise. Although less recurrent, participants mentioned that
in some cases bot comments might be perceived as noise by developers, which disrupts
the conversation in the pull request. On the one hand, “comments from code coverage

bots tend to give you more visibility and provide more context[]” (P6). On the other hand,
developers complain about the noise these comments introduce to the communication
channel. According to P7, the repetitive comments of code coverage bots are “disrupting

the conversation”, since “if you have to develop a certain conversation and you have a bot

message, this could have a negative impact on the conversation.” One of the consequences
of this noise incurred by the repetitive bot comments is that “[developers] pay less attention

to it” (P7), impacting the developers communication.

We also asked developers whether they have seen the observed e�ects on their own
projects, and what are the other e�ects they attribute to the code review bot adoption.
The most recurrent (8) observed e�ect was less communication. As stated by P10: “I

remember one of the maintainers saying ‘the tests are missing here.’ She always had to post

that comment. Then, we adopted the bot to comment on the coverage and had no need for

her to comment anymore.” Also, 6 participants observed fewer pull requests rejections and
faster rejections, and 5 participants have observed more merged pull requests. Finally,
developers did not attribute any other e�ect to the bot introduction.

Summary of reasons. Project maintainers and contributors reported several reasons
for more merged pull requests, fewer comments, and fewer and faster rejections.
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According to them, bot comments help them to understand the state and quality of
the contribution, making maintainers more con�dent to merge pull requests, which
also changes the focus of developer discussions.

3.4 Limitations and Threats to Validity
In this section, we discuss the limitations and potential threats to validity of our study,

their potential impact on the results, and how we have mitigated them (Wohlin et al.,
2012).

External Validity: While our results only apply to OSS projects hosted on GitHub, many
relevant projects are currently hosted on this platform (Dias et al., 2016). Our selection
of projects also limits our results. Therefore, even though we considered a large number
of projects and our results indicate general trends, we recommend running segmented
analyses when applying our results to a given project. For replication purposes, we made
our data and source code publicly available.4

Construct Validity: One of the constructs in our study is the “�rst bot comment on a pull
request” as a proxy to the “time of bot adoption” on a project. A more precise de�nition
of this adoption time would have involved the integration date, which is not provided by
the GitHub API. Hence, the validity of the “time of bot adoption” construct might have
been threatened by the de�nition. We reduce this threat by excluding the period of 15
days immediately before and after adoption from all analyses. Moreover, Kalliamvakou et
al. (Kalliamvakou et al., 2014) stated that many merged pull requests appear non-merged,
which could also a�ect the construct validity of our study, since we consider the number
of merged pull requests. To increase construct validity and improve the reliability of our
qualitative �ndings, we employed a constant comparison method (Glaser and Anselm L
Strauss, 2017). In this method, each interpretation is constantly compared with existing
�ndings as it emerges from the qualitative analysis.

Internal Validity: To reduce internal threats, we applied multiple data �ltering steps
to the statistical models. To con�rm the robustness of our models, we varied the data
�ltering criteria, for example, by �ltering projects that did not receive pull requests in
all months, instead of at least 6 months, and observed similar phenomena. Projects that
disabled the bot during the period we considered might be a threat. However, detecting
whether a project disabled the bot or not is challenging. The GitHub API does not provide
this information. We reduce this threat by removing from our dataset projects without
bot comments during the last four months of analysis. Additionally, we added several
controls that might in�uence the independent variables to reduce confounding factors.
However, in addition to the already identi�ed dependent variables, there might be other
factors that in�uence the activities related to pull requests. These factors could include the
adoption of other code review bots, or even other types of bots and non-bot automation.
To treat this, we removed projects that adopted more than one bot, based on the list
of bots provided by Wessel et al. (Wessel, Souza, et al., 2018). To ensure information

4 https://doi.org/10.5281/zenodo.4618498
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saturation, we continued recruiting participants and conducting interviews until we came
to an agreement that no new signi�cant information was found. As posed by Strauss and
Corbin (A. Strauss and Juliet M Corbin, 1997), sampling should be discontinued once
the collected data is considered su�ciently dense and data collection no longer generates
new information.

3.5 Discussion
Adding a code review bot to a project often represents the desire to enhance feedback

about the contributions, helping contributors and maintainers, and achieving improved
interpersonal communication, as already discussed by Storey and Zagalsky (Storey and
Zagalsky, 2016). Additionally, code review bots can guide contributors toward detecting
change e�ects before maintainers triage the pull requests (Wessel, Souza, et al., 2018),
ensuring high-quality standards. In this Chapter, we focused on monthly activity indicators
that are not primarily related to bot adoption, but might be impacted by it. We found that
the bot adoption has a statistically signi�cant e�ect on a variety of activity indicators.

According to the regression results, the monthly number of merged pull requests
increased, even faster, after the code review bot adoption. In addition, the number of
non-merged pull requests continued to decrease, even faster, after bot adoption. These
models showed that after adopting the bot, maintainers started to deal with an increasing
in�ux of contributions ready to be further reviewed and integrated into the codebase. Also,
these �ndings con�rm the hypothesis we formulated based on the exploratory case study.
According to our participants, the increase in the monthly number of merged pull requests,
as well as the decrease in the monthly number of non-merged one, are explained by the
transparency introduced by the bot feedback. Contributors started to have faster and
clearer feedback on what they needed to do to have their contribution accepted. Further,
participants also mentioned that contributors have been pushed to enhance their pull
requests based on bot feedback.

In addition, we noticed that just after the adoption of the code review bot the median
number of comments slightly increased for merged pull requests. The number of comments
on these pull requests could increase due to contributions that drastically reduced the
coverage, stimulating discussions between maintainers and contributors. This can happen
especially at the beginning of bot adoption, since contributors might be unfamiliar with
bot feedback. After that initial period, we found that the median number of comments on
merged pull requests decreased each month. According to our participants, less communi-
cation could be explained by the transparency and con�dence developers gain from bot
feedback. Also, developers mentioned that after bot adoption the focus of the developers
discussion changed, since there is no need for certain discussions related to coverage.
Considering non-merged pull requests, there is no signi�cant change in the number of
comments as time passes. These results di�er from the case study results, indicating that
individual projects reveal di�erent results, which are likely caused by other project-speci�c
characteristics.

From the regression results, we also noticed an increase in the time spent to merge pull
requests just after bot adoption. It makes sense from the contributors’ side, since the bot
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introduces a secondary evaluation step. Especially at the beginning of the adoption, the
code review bot might increase the time to merge pull requests due to the need to learn
how to meet all bot requirements and obtain a stable code. Maintainers might also deal
with an increase in the volume of contributions ready to review and merge, impacting the
time spent to review all of them. Further, the regression model shows a decrease in the
time spent to review and reject pull requests. Overall, according with our participants it
indicates that after the bot adoption maintainers stopped expending e�ort on pull requests
that were not likely to be integrated into the codebase.

As we found in the model of commits on merged pull requests, just after the adoption
of the bot the median number of pull request commits increased. The bot provides imme-
diate feedback in terms of proof of failure, which can lead contributors to submit code
modi�cations to change the bot feedback and have their contribution accepted. Overall,
the regression models reveal that the monthly number of commits did not change for both
merged and non-merged pull requests as time passed. These results di�er from the case
study results. Nevertheless, even if there is an increase in the number of commits reported
in the case study, overall the monthly number of commits are quite stable. For example,
for CakePHP it varies from 1 to 2 for merged pull requests, and 1 to 4 for non-merged pull
requests. Additionally, in the main study, we account for control variables, rather than
analyzing the monthly number of commits interdependently. As presented in Section 3.3.1,
for example, the number of comments on pull requests explains the largest amount of
variability in these models, indicating that the number of commits is strongly associated
with the communication during the pull request review.

3.5.1 Implications and Future Work
In the following, we discuss implications and future work for researchers and practi-

tioners in light of our results and related literature.

Implications for Project Members

Projects need to make informed decisions on whether to adopt code review bots (or
software bots in general) into their projects and how to use them e�ectively. We found
that the dynamics of pull requests changed following the adoption of code review bots.
Hence, besides understanding the e�ects on code quality, practitioners and open-source
developers can leverage our results to be aware of other consequences of bot adoption
and take countermeasures to avoid the undesired e�ects.

Implications for Newcomers

Our previous work reported that although bots could make it easier for some newcom-
ers to submit a high-quality pull request, bots can also provide newcomers with information
that can lead to rework, discussion, and ultimately dropping out from contributing (Wessel,
Serebrenik, I. Wiese, I. Steinmacher, and Marco Aurelio Gerosa, 2020). It is reasonable
to expect that newcomers who receive friendly feedback will have a higher engagement
level and thus sustain their participation on the project. Hence, future research can help
bot designers by providing guidelines and insights on how to support new contributors.
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Additional e�ort is also necessary to investigate the impact of code review bots’ feedback
for newcomers, who already face a variety of barriers (Balali et al., 2018; I. Steinmacher,
T. Conte, et al., 2015).

Implications for Researchers

For researchers interested in software bots, it is important to understand the role of
code review bots in the bot landscape. It is important to understand how such bots a�ect the
interplay of developers in their e�ort to develop software, and our study provides the �rst
step in this direction. Considering that bot output is mostly text-based, how bots present
content can highly impact developers’ perceptions (Liu et al., 2020; Chaves and Marco
Aurelio Gerosa, 2020). Additional e�ort is necessary to investigate how the developers’
cognitive styles (Vorvoreanu et al., 2019; Mendez et al., 2018) might in�uence the way
developers interpret the bot comments’ content. In this way, future research can investigate
how people with di�erent cognitive styles handle bot messages and learn from them. Other
social characteristics of the bots can also be investigated in this context (Chaves and Marco
Aurelio Gerosa, 2020). Future research can lead to a set of guidelines on how to design
e�ective messages for di�erent cognitive styles and developer pro�les. Further, developers
complain about the information overload caused by repetitive bot behavior on pull requests,
which has received some attention from the research community (Erlenhov, Neto, et al.,
2016), but remains a challenging problem. In fact, there is room for improvement on
human-bot collaboration on social coding platforms. When they are overloaded with
information, teams must adapt and change their communication behavior (Ellwart et al.,
2015). Therefore, there is also an opportunity to investigate changes in developers’ behavior
imposed by the e�ects of information overload. Additional research can also investigate
how to use code reviews bots to support the training of new software engineers (Pinto
et al., 2017).

3.6 Final Considerations

In this chapter, we presented an exploratory empirical investigation of the e�ects of
adopting bots to support the code review process on pull requests. While several code
review bots have been proposed and adopted by the OSS community, relatively little has
been done to evaluate the state of practice. To understand the impact on practice, we
statistically analyzed data from 1, 194 open source projects hosted on GitHub. Further, we
had an in-depth investigation into the reasons of the identi�ed impacts. We interviewed
12 project maintainers and contributors experienced with code review bots.

By modeling the data around the introduction of a code review bot, we notice di�er-
ent results from merged pull requests and non-merged ones. We see that the monthly
number of merged pull requests of a project increases after the adoption of a code review
bot, requiring less communication between maintainers and contributors. At the same
time, code review bots can lead projects to reject fewer pull requests. Afterwards, when
interviewing developers we found a comprehensive set of reasons for these e�ects. First of
all, bot comments help contributors and maintainers to be aware the state and quality of
the contribution, making maintainers more con�dent to merge pull requests, which also
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changes the focus of developers’ discussions.

In the next chapter, we delve into the challenges caused by the interaction of bots on
pull requests.
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Chapter 4

Challenges of Interacting with
Software Bots

This chapter reports our work on identifying the challenges incurred by the bots
interaction on pull requests. We extend previous work by delving into the challenges
incurred by bots on social coding platforms. To do so, we investigate the challenges bots
bring to the pull request work�ow from the perspective of practitioners. Speci�cally, our
work investigates the following research question:

RQ. What interaction challenges do bots introduce when supporting pull requests?

To answer our research question, we qualitatively analyzed data collected from semi-
structured interviews with 21 practitioners, including OSS project maintainers, contrib-
utors, and bot developers who have experience interacting with bots on pull requests.
After analyzing the interviews, we validated our �ndings through member-checking. The
study described in this chapter was published at CSCW 2021 (Wessel, I. Wiese, et al.,
2021).

4.1 Research Design
The main goal of this study is to identify challenges caused by bots on pull request

interactions. To achieve this goal, we conducted a qualitative study of responses collected
from semi-structured interviews. Figure 4.1 shows an overview of the research design
employed in this study.

4.1.1 Participants recruitment
We recruited participants from three di�erent groups: (i) project maintainers, (ii)

project contributors, and (iii) bot developers. Participants were expected to have experience
contributing to or maintaining projects that use bots to support pull request activities.
We adopted four main strategies to invite participants: (i) advertising on Twitter, (ii)
direct messages, (iii) emails, and (iv) snowballing. Besides the broad advertisement posted
on Twitter, we also manually searched for users that had posted about GitHub bots or
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Figure 4.1: Research Design Overview

commented on posts related to GitHub bots. During this process, we sent direct messages to
51 developers. In addition, we used the GitHub API to collect a set of OSS projects that use
more than one bot. After collecting a set of 225 GitHub repositories using three or more bots,
we sent 150 emails to maintainers and contributors whose contact information was publicly
available. In addition, we asked participants to refer us to other quali�ed participants.
We continued inviting participants as the data unveiled new relevant information. The
participants received a 25-dollar gift card as a token of appreciation for their time.

As a result of our recruitment, we interviewed 21 participants—identi�ed here as P1
– P21. Table 4.1 presents the demographics of our interviewees. Their experience with
software development ranges from 3 to 25 years (≃ 12 years on average). Participants
are geographically distributed across North America (≃53%), Europe (≃38%), and South
America (≃10%). Three interviewees are project contributors who have interacted with
bots when submitting pull requests to open-source projects. All the other interviewees (18)
maintain projects that use bots to support pull request activities. Besides their experience
as project maintainers, seven of them also have experience in contributing to other projects
that use bots. Six maintainers have experience building bots. One of the maintainers also
described himself as a “bot evangelist.”

Additionally, participants have experience with diverse types of bots, including project-
speci�c bots, dependency management bots (e.g., Dependabot, Greenkeeper), code review
bots (e.g., Codecov, Coveralls, DeepCode), triage bots (e.g., Stale bot), and welcoming bots
(e.g., First Timers bot). Their experience ranges from interacting with 1 to 6 bots (≃ 2 bots
on average), encompassing a total of 24 di�erent bots. Further, bot developers develop



4.1 | RESEARCH DESIGN

53

Participant SD Experience Experienced with bots as Location
ID (years) Maintainer Contributor Bot developer

P1 9 3 3 Europe
P2 2 3 South America
P3 20 3 3 3 North America
P4 10 3 3 North America
P5 12 3 3 3 North America
P6 4 3 3 North America
P7 10 3 North America
P8 10 3* North America
P9 14 3 3 Europe
P10 12 3 3 South America
P11 5 3 Europe
P12 20 3 3 North America
P13 25 3 North America
P14 25 3 Europe
P15 13 3 North America
P16 20 3 3 Europe
P17 8 3 3 North America
P18 5 3 Europe
P19 5 3 3 North America
P20 4 3 Europe
P21 11 3 Europe

* Also described himself as a bot evangelist

Table 4.1: Demographics of interviewees

between 1 and 3 bots (≃ 1 on average). For con�dentiality reasons, we do not report either
the bots used by each participant or their projects.

4.1.2 Semi-structured interviews
To identify the challenges, we conducted semi-structured interviews, which comprised

open- and closed-ended questions that enabled interviewers to explore interesting topics
that emerged during the interview (Hove and Anda, 2005). By participants’ requests, 2
interviews (P1 and P20) were conducted via email. The other 19 interviews were conducted
via video calls. We started the interviews with a short explanation of the research objectives
and guidelines, followed by demographic questions. The rest of the interview script focused
on three main topics: (i) experience with GitHub bots, (ii) main challenges introduced
by the bots, and (iii) the envisioned solutions to those challenges. The detailed interview
script is publicly available1. Each interview was conducted remotely by the author of this
dissertation and lasted, on average, 46 minutes.

4.1.3 Data analysis
We qualitatively analyzed the interview transcripts, performing open and axial coding

procedures (A. L. Strauss and J. M. Corbin, 1998; Stol et al., 2016) throughout multiple
rounds of analysis. We started by applying open coding, whereby we identi�ed challenges
brought by the interaction, adoption, and development of bots. To do so, the author of
this dissertation conducted a preliminary analysis, identifying the main codes. Then, the
author discussed the coding in weekly hands-on meetings with three other experienced
researchers, aiming to increase the reliability of the results and mitigate bias (A. L. Strauss
and J. M. Corbin, 1998; Patton, 2014). In these meetings, all the researchers revisited codes,
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de�nitions, and their relationships until reaching an agreement. Afterwards, the author
further analyzed and revised the interviews to identify relationships between concepts
that emerged from the open coding analysis (axial coding). Then, the entire group of
researchers discussed the concepts and their relationships during the next weekly meeting.
During this process, we employed a constant comparison method (Glaser and Anselm L
Strauss, 2017), wherein we continuously compared the results from one interview with
those obtained from the previous ones. The entire analysis lasted eight weeks and each
weekly meeting lasted from 1 to 2 hours.

For con�dentiality reasons, we do not share the interview transcripts. However, we
made our complete code book publicly available1. The code book includes the code names,
descriptions, and examples of quotes for all categories.

4.1.4 Member-checking
As a measure of trustworthiness, we member-check our �nal interpretation of the the-

ory about noise introduced by bots with the participants. The process of member-checking
is an opportunity for participants check particular aspects of the data they provided (Mer-
riam, 1998). According to Charmaz (2006), member-checking entails “taking ideas back to

research participants for their con�rmation.” Such checks might occur through returning
emerging research �ndings or a research report to individual participants for veri�cation
of their accuracy.

We contacted our 21 participants via email. In the email, we included the theory,
followed by a short description of the concepts and their relationships. Participants could
provide feedback by email or through an online meeting. Ten participants provided their
feedback: P2, P3, P4, P7, P13, P16, P18, and P20 provided a detailed feedback by email,
whereas P10 and P12 scheduled an online meeting, each lasting about 20 minutes.

The participants who gave feedback agreed with the accuracy of the theory about
noise introduced by bots. P4, an experienced bot developer, described our research in a
positive light, saying it “captures the problem of writing an e�ective bot.” The participants
suggested a few adjustments. For instance, P12 recommended including another counter-
measure to avoid noise (“re-designing the bot” ). We addressed the feedback by including
this countermeasure to our theory. Additional comments from member-checking can be
found in our code book, tagged as “from member-checking”.

4.2 Results
In this section, we present the challenges reported by the participants, as well as a

theory focused on explaining the reasons and e�ects of the noise caused by bots on pull
requests.

1 https://zenodo.org/record/4088774

https://zenodo.org/record/4088774
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4.2.1 Challenges incurred by bots
The interviewees reported social and technical challenges related to the development,

adoption, and interaction of bots on pull requests. Figure 4.2 shows a hierarchical catego-
rization that summarizes these challenges. We added a graphical mark in the hierarchical
categorization to identify challenges that have been also identi�ed by previous work, de-
scribed in Chapter 2. In summary, we found 25 challenges, organized into three categories
(development challenges, adoption challenges, and interaction challenges) and several
sub-categories. In the following, we present these three main categories of challenges,
focusing on the 12 challenges related to the human-bot interaction on pull requests, since
they strongly align with the challenges posed by the theory about noise introduced by bots.
We describe the categories in bold, and provide the number of participants we assigned to
each category (in parentheses).

Bot interaction challenges

Concerning the human-bot interaction on pull requests, the most recurrent and central
challenge according to our analysis is that bots introduce noise (12) to the human
communication and development work�ow. We discuss the results that are speci�c to
noise in Section 4.2.2, where we describe the proposed theory about noise caused by
bots.

With regards to bot communication, we unveiled four challenges. We noticed that
interacting with the bot requires other technical knowledge (4) not related to the
bot. As a consequence, for example, developers might trigger a bot by accident or even
misuse the bot capabilities. P5 explained that some developers are not aware of how
auto-merging pull requests works on GitHub, which leads contributors to misuse the bot
that they developed to support this functionality. This happens due to the way bots are
designed to interact. As described by P4, bots perform tasks and need to communicate with
humans; however, they do not understand the context of what they are doing. Therefore, we
observed that bots do not contextualize their actions (1) and sometimes provide non-
comprehensive feedback (3). In these cases, when a bot message is not clear enough,
developers “[...] need to go and ask a human for clarity.” [P17], which may generate more
work for both contributors and maintainers. In addition, bots do not provide actionable
changes (2) for developers, meaning that some bots’ messages and outcomes are so strict
that do not guide developers on what they should do next to accomplish their tasks.
According to P8 “it is great to see ‘yes’ or ‘no’, but if it is not actionable, then it is not useful

[...]”.

Since OSS developers come from diverse cultures and backgrounds, their cultural
di�erences and previous experiences in�uence how they interact with and react to a bot’s
action. We observed three main challenges related to developers’ expectation breakdowns

when interacting with bots on pull requests. First, bots can enforce in�exible rules (4).
These rules are commonly imposed by a speci�c community and evidenced by bot actions.
For example, P7 mentioned: “so, the biggest complaints we have gotten are that our lint

rules and tests are too strict. And of course, the bot enforces that.” In addition, we found that
the way these in�exible rules are interpreted can vary based on developers’ expectations.
P7 suggested that the bots’ “social issues largely come down to a bot being in�exible and
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not meeting somebody’s expectations”. Another complaint refers to bots intimidating
newcomers (3). For new contributors to an OSS project, interacting with a bot that they
have never seen or heard of before might be confusing, and the newcomers might feel
intimidated, as stated by P12: “If you’re new to a project, then you might not be expecting

bots, right? So, if you don’t expect it, then that could be confusing”. Furthermore, some
developers might �nd it strange to interact with a bot (2), as mentioned by P12: “‘Hey,

I’m here to help you’ [...] for some people, it is still quite strange, and they are quite surprised

by it.” Further, P5 also mentioned that receiving “thanks” from a non-human feels less
sincere.

From an ethical perspective, we identi�ed four challenges. Five participants reported
bots as intrusive (5). For them, an intrusive bot is a bot that modi�es commits and pull
requests: “let’s say you have a very large line of code and the bot goes there and breaks that

line for you. It is intrusive because it is changing what the developers did.” [P21]. Another
example of intrusive bots are those created for spamming repositories. P4 mentioned
the case of Orthographic Pedant bot.2 This bot searches for repositories in which there
is a typo, then creates a pull request to correct the typo. The biggest complaint about
this bot is that the developers did not allow the bot to interact on their projects, as
P4 explained: “people want to have agency, they want to have a choice. [...] They want to

know that they are being corrected because they asked to be corrected.” In addition, bots
impersonating developers (4) were also mentioned as a challenge by our interviewees.
Two other ethical challenges reported during our interviews were malicious intent
(2) and biased behavior (2). Bots with a malicious intent could “manipulate developers

actions” [P9], for example, by including a security vulnerability into the source code by
merging a pull request. Further, according to P9, as there is no criteria to verify the use of
bots, they can have a biased behavior and represent the opinion of a particular entity (e.g.,
the enterprise who created the bot).

Bot adoption challenges

Participants also mentioned challenges related to the adoption of bots into their GitHub
repositories. According to P4, the challenges of bot adoption begin with �nding the right
bot. Developers complain that it is di�cult to �nd an appropriate bot (3) to solve
their problems. As P4 explained, there is a limited search mechanism for bots (3). P6
added: “In the [GitHub] marketplace, [...] I don’t even know if there is a category for bots.” If
maintainers �nd an appropriate bot, they then have to deal with con�guration challenges.
First, it is di�cult to tailor con�guration (4) to a project. Even after maintainers spend
the time needed to con�gure the bot, there is no way to predict what the bot will do
once installed. In P10’s experience, it is “easy to install the bot with the basic con�guration.

However, it is not easy to adjust the con�guration to your needs”. A related challenge is the
limited con�guration (3) settings provided by the bots. There are limited resources,
for example, to integrate the bot into several projects at once. Some participants also
mentioned the burden to set up con�guration �les (2): “It is like a whole con�guration

�le you have to write. That is a lot of work, right?” [P4]. Maintainers also need to deal
with technical complexity issues caused by bot adoption, such as handling bots failures

2 https://github.com/thoppe/orthographic-pedant

https://github.com/thoppe/orthographic-pedant
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(5). Due to bot instability, our interviewees also mentioned that there is more work to
monitor bots (3) to guarantee that everything is working well. Another technical issue
is that adopting a bot increases the barrier for new maintainers (1), who need to be
aware of how each bot works on the project.

Bot development challenges

We also identi�ed challenges related to bot development. Firstly, bot developers often
face platform limitations, commonly due to restricted bot actions (2). As mentioned by
P5: “There are still a few things that just cannot be done with the [GitHub] API. So that’s

a problem that I face.” The platform restrictions might limit both the extent of the bots’
actions and the way bots communicate. Regarding the restricted bot communication
(2), P4 stated that the platform ideally would provide additional mechanisms to improve it,
since the only way bots communicate is through comments. Participants also reported
technical overhead to host and deploy a bot (4). P13 identi�ed the “main trouble with

bots right now is you have to host them.” Therefore, when a developer has to maintain
the bot itself (e.g., project-speci�c bots), it becomes an overhead cost, since “the bot saves

you time but it also costs time to maintain” (P19). In addition, we found challenges in
building complex bots (4). For example, P12, an experienced bot developer, reports that
bots found in other projects “just automate a single thing. We just have one bot that does

everything. I think it is hard to build a bot that has a lot of capabilities.”

Summary about challenges caused by bots. We provided a hierarchical catego-
rization of bot challenges and focused on the human-bot interaction challenges. We
found 12 challenges regarding bot communication, expectations, and ethical issues.
Among these challenges, we found noise as a recurrent and central challenge.

4.2.2 Theory about noise introduced by bots
As aforementioned, the most recurrent and central problem reported by our intervie-

wees was the introduction of noise into the developers’ communication channel. This
problem was a crosscutting concern related to bots’ development, adoption, and inter-
action in OSS projects. Figure 4.3 shows the high-level concepts and relationships that
resulted from our qualitative analysis. Some interviewees complained about annoying
bot behaviors such as verbosity, high frequency and timing of actions, and unsolicited
actions. Interviewees also mentioned a set of factors that might cause annoying behaviors.
These behaviors are often perceived as noise. The noise introduction leads to information
overload (i.e. noti�cation overload, extra information for maintainers), which disrupts

both human communication and development work�ow. To handle the challenges
provoked by noise, developers rely on countermeasures, such as re-con�guring or re-
designing the bot.

In the following, we present in detail the theory about noise introduced by bots
described in Figure 4.4. As previously, we include the concepts in bold face and the (sub-
)categories in italic. We also provide the number of participants for each category (in
parentheses).
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Bot annoying behaviors

Interviewees reported several annoying behaviors when bots interact on pull requests.
The most recurrent one was the high frequency and timing of bots’ actions (8). This
includes the case in which the interviewees say that bots perform repetitive actions, such as
creating numerous pull requests and leaving dozen of comments in a row. P6 explained: “[...]
is an automation that runs too frequently and then it keeps opening up all the pull requests

that I do not need or want to.” In addition, P9 mentioned complaints about the frequency
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of bot comments: “sometimes we get comments like ‘hey, bot comments too much to my

taste’.” Besides that, bot actions are usually time insensitive. Bots are designed to “work

all day long” [P10] which might interrupt the developer at the wrong time. P3 o�ered an
exemplary case of how a welcoming bot might be time insensitive: “as long as, for example,

the comment is immediately after I did a change [...] if it is in a second or two and I’m seeing

the page I do not get a new noti�cation. But if it happens three minutes later, and I left the

page and suddenly I get the new noti�cation and I think ‘ah, this person has another question

or something,’ so I need to check it out and �nd out that this is a bot.”

Another annoying behavior regards the bots’ verbosity (5). Participants complained
about bots providing comments with dense information “in the middle of the pull request”
[P13], oftentimes overusing visual elements such as “big graphics”[P13]. In P19’s experience,
developers frequently do not like when “[...] bots put a bunch of the information that they

try to convey in comments instead of [providing] status hooks or a link somewhere.” P17
reinforced this issue regarding: “[...] a GitHub integration [bot] that posts these rules. Really

dense and information rich elements to your pull requests. And I’ve seen it be a lot more

distracting than it is helpful.”

Another common annoying behavior regards the execution of unrequested or un-
desirable tasks (4) on pull requests. Participants mentioned that, due to external factors,
or even due to the way bots have been designed to interact on pull requests, bots often
perform tasks that were neither required nor desired by human developers. P6 described
an issue caused by an external failure that impacted the bot interaction: “Something went

wrong with the release process. So, [the bot] opened up a bunch of di�erent pull requests. And

like some of them were a mistake. The other engineer that had to comment and be like, ‘Hey,

sorry, these were a mistake’.”

To illustrate the described behaviors, we highlighted some examples cited by our
participants and described in the state-of-the-practice. Figure 4.5a shows the case of a
verbose comment, which included a lot of information and many graphical elements,
inserted by a bot in the middle of a human conversation. In Figure 4.5b, we show a bot
overloading a single repository with many pull requests, even if there were opened pull
requests by the same bot. Finally, Figure 4.5c depicts a bot spamming a repository with an
unsolicited pull request.

(a) Verbosity (b) High frequent actions (c) Unsolicited actions

Figure 4.5: Examples of annoying behaviors from the state-of-the-practice
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What might cause an annoying behavior?

Several factors provoke annoying behaviors, sometimes by bots’ design (4). Some bots
are intentionally designed to spam repositories, as reported in the interaction challenges
in Section 4.2.1. Other bots might demonstrate a certain behavior by default, as said by
P19 when talking about a bot that reports code coverage: “but by default, it also leaves a

comment.”

We also found unintended factors that might trigger annoying behaviors. For example,
bot failures (4) might be responsible for triggering unsolicited tasks, or even increasing
the frequency of bot actions. As shown in Section 4.2.1, handling bot failures is one of
the challenges faced by project maintainers. According to P3, when the stale bot, which
triages issues and pull requests, recovers from a failure, it posts all missed comments and
closes all pull requests that need to be closed. As a consequence, it suddenly overloads both
maintainers and contributors. As P7 describes: “the only times I perceived our bots as noisy

is when there is an obvious bug.” Further, an unforeseen problem with bot adoption (3)
also may result in unexpected actions or overloading maintainers with new information.
Once the stale bot is installed, for example, it comments on every pull request that is open
and no longer active. As P3 comments: “this is what you want, but it is also a lot of noise

for everyone who is watching the repository.”

In addition, interviewees also mentioned issues during bot development (3) that
might trigger an annoying behavior. As reported in the bot development challenges
(Section 4.2.1), bot developers, for example, often face technical overhead costs to host
and deploy bots. P7 reported that once they tried to upgrade the bot, it led to an “edit

war,” resulting in the bot performing unsolicited tasks. Additionally, since there is a lack
of test environments for bots under development, bot developers are forced to test bots in

production.

Di�erent perceptions of noise

Bots’ verbosity, high frequency of actions, and the execution of unsolicited tasks are
generally perceived as noise by human developers. This perception, however, might be
in�uenced by project standards (3) and developers’ previous experiences (3), as noted
by P12 “what some people might think of as noise is information to other people, right? Like,

it depends on the user’s role and context within the project.” In some cases, for example,
an experienced developer may be annoyed by a large amount of information, while a
newcomer may bene�t from it. As explained by P3, an experienced open source maintainer,
“when it is your self maintained project, and you see these comments everywhere and you

cannot con�gure the [bot] to turn it o�, it might become just noise.” For P19, a verbose bot
is “really more for novices” since it “tends to have pretty, pretty dense messages.” However,
dense messages are not necessarily useful for a developer, nor will a new contributor
necessarily bene�t from them. For P7, newcomers could perceive the bots’ verbosity as
noise: “I do worry that newcomers perceive the bots as noisy, even with only 1 or 2 comments,

because the comments are large.” In addition, maintainers claim that bots’ behaviors might
be perceived as noisy when they do not comply with projects’ rules and standards. P9
provided an example of this: “every public repository has some standards, whether in terms

of communication, whether in terms of how many messages the developer should see. And
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the bot likely will not comply with this policy.”

Bot overpopulation

In addition to project standards and developers’ previous experience, bot overpopu-
lation (8) might also in�uence the perception of noise. Eight interviewees reported that
annoying bot behaviors can be intensi�ed by the presence of several bots on the same
repository. As said by P19: “because there were 30 di�erent bots, and each one of them was

asynchronously going in. So, it was just giving us tons and tons of comments.”

E�ects of information overload

The bots’ annoying behaviors, which are perceived as noise, lead to information
overload (7). As stated by P3: “it [bot comment] replicates information that we already

had.” Also, the overload of information can be seen as an overload of noti�cations (e.g.,
emails or GitHub noti�cations). It is a problem, as explained by P12: “given that we already

have a lot of noti�cations for those of us who use GitHub a lot, then I think that’s a real

problem.”

Therefore, the information overload negatively impacts both human communication
(6) and development work�ow (5). Developers mentioned that bots interrupt the con-

versation �ow in pull requests, adding other information in the middle of the conversation:
“you are talking to the person who submitted the pull request and then a bot comes in and puts

other information in the middle of your conversation” [P13]. Participants also mentioned
that they usually “miss important comments from humans” [P1] among the avalanche of
information. Due to information overload, it is also hard to parse all the data to extract
something meaningful. Project maintainers often complain about being interrupted by bot
noti�cations, which disrupts the development work�ow. They also started to deal with the
burden of checking whether it is a human or bot noti�cation. Their time and e�orts are
also consumed by other tasks not related to development, including reporting spam and
excluding undesirable bot comments: “I waste �ve minutes determining that it is a spam”
[P5].

One practical example of the e�ects of noise introduction is the case of mention bot.
The challenges of using this bot were reported in the literature by Peng, Yoo, et al. (2018)
and Peng and Ma (2019) and mentioned by P5. Mention bot is a reviewer recommendation
bot created by Facebook. The main role of this bot is to suggest to a reviewer a speci�c
pull request. In a project that P5 helps to maintain, a maintainer that no longer works on
the project started to receive several noti�cations when the bot was installed.

Countermeasures to overcome noise

We also grouped the strategies that our participants recommend to overcome bots’
noise. In most cases, participants reported the countermeasures (6) as a way to manage
the noise rather than avoid it. For instance, the noise continues to happen even when
a developer stops watching a repository. Maintainers also mentioned that they need to
re-con�gure the bot to avoid some behaviors. For some bots, it is possible to turn the
comments o�. During member-checking, P20 reported that in some cases it necessary
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to re-con�gure the bot to “lower the frequency of actions.” For example, this is useful for
reducing the overload of information generated by dependency management bots, which
can submit a couple of pull requests every day. These bots can suddenly monopolize the
continuous integration and disrupt the work�ow for humans. Another countermeasure
that emerged from member-checking is the necessity to re-design the bot. P12 mentioned
that, after receiving feedback from contributors about noise, they decided to re-design
the content of the bot messages and when the bot would be allowed to interact on pull
requests.

Summary of the noise theory. We presented a theory of how certain bot behaviors
can be perceived as noise on OSS pull requests. This perception often relies on the
number of bots on a repository, project standards, and the human’s previous experience.
In short, we found that the noise introduced by bots leads to information overload,
which interferes with how humans communicate, work, and collaborate on social
coding platforms.

4.3 Discussion
In this section, we discuss our main �ndings, comparing them with the state-of-the-

art.

Bots on GitHub serve as an interface to integrate humans and services (Wessel, Souza,
et al., 2018; Storey and Zagalsky, 2016). They are commonly integrated into the pull
request work�ow to automate tasks and communicate with human developers. The in-
creasing number of bots on GitHub relates to the growing importance of automating
activities around pull requests. However, as discussed by Storey and Zagalsky (2016) and
Paikari and Hoek (2018), potentially negative impacts of task automation through bots
are overlooked. Therefore, it is critical to understand software bots as socio-technical—
rather than technical—applications, which must be designed to consider human interaction,
developers’ collaboration, and other ethical concerns (Storey, Serebrenik, et al., 2020).
In this context, our work contributes by introducing and systematizing evidence from the
perspective of OSS practitioners who have experience interacting with and developing
bots on the GitHub platform.

Bot communication challenges: The way bots communicate impacts developers’ in-
terpretations and how they handle bot outcomes. According to C. Lebeuf, Storey, et al.

(2018), the way bots communicate is important because “the bot’s purpose – what it can

and can’t do – must be evident and match user expectations.” However, we evidenced the
necessity of previous technical knowledge to interact with and understand the messages
of bots on GitHub. Combined with the lack of context, it might be extremely di�cult for
humans to extract meaningful guidance from bots’ feedback. These challenges relate to the
platform limitations bot developers face and the textual communication channel (Liu et al.,
2020). These �ndings complement the previous literature, which found that practitioners
often complain that bots have poor communication skills and do not provide feedback that
supports developers’ decisions (Wessel, Souza, et al., 2018). Brown and Parnin (2019)
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argue that designing bots to provide actionable feedback for developers is still an open
challenge.

Expectations Breakdowns: Developers with di�erent pro�les and backgrounds have
di�erent expectations about bot interaction. Bots, for example, enforce prede�ned cultural

rules of a community, causing expectation breakdowns for outsiders. We also found that
bots intimidate newcomers. New contributors might be confused when interacting with a
bot that they have never seen or heard of before. Previous work by Wessel, Souza, et al.

(2018) has already mentioned that support for newcomers is both challenging and desirable.
In a subsequent study, Wessel, Serebrenik, I. Wiese, I. Steinmacher, and Marco Aurelio
Gerosa (2020) reported that although bots could make it easier for some newcomers to
submit a high-quality pull request, bots can also provide them with information that can
lead to rework, discussion, and ultimately dropping out from contributing. Developers’
di�erent cognitive styles (Vorvoreanu et al., 2019; Mendez et al., 2018) may also have
diverse expectations and their pro�les should be considered during the design of bot
messages to avoid expectation breakdowns. Di�erences related to developers’ backgrounds
are a common cause of problems in distributed software development (I. Steinmacher,
Chaves, et al., 2013). However, when it comes to bots interacting on social coding platforms,
it is still an under-explored theme.

Ethical challenges: Intrusive bots generate ethical concerns. Common intrusive bot
behaviors include modifying actions performed by humans, such as changing commits
or pull requests content, or even spamming repositories with unsolicited pull requests
or comments. Spamming by bots is one of the factors responsible for the perception of
noise on GitHub repositories. Another important concern is whether bots are allowed
to impersonate humans (Storey, Serebrenik, et al., 2020). For bots on Wikipedia, for
example, this behavior is expressly prohibited (Müller-Birn et al., 2013). At the same
time, Murgia et al. (2016) have shown that individuals on Stack Over�ow might be more
likely to accept bots impersonating humans as opposed to bots disclosing that they are bots.
On GitHub, however, there is no explicit prohibition for bots impersonating humans, or even
bots with malicious intent. Thus, these bots might reinforce stereotypes and toxic behaviors,
appear insincere, and target minorities. Golzadeh et al. (2021) propose a strategy to detect
bots on GitHub based on their message patterns. This strategy might be used to identify
malicious bots.

Noise as a central challenge: Noise is a central challenge in bots’ interactions on OSS’
pull requests. We organized our �ndings into a theory that provides a broader vision of how
certain bot behaviors can be perceived as noise, how this impacts developers, and how they
have been attempting to handle it. In communication studies and information theory, the
term “noise” refers to anything that interferes with the communication process between a
speaker and an audience (Shannon, 2001). In the context of social coding platforms, we
found that the noise introduced by bots around pull requests refers to any interference
produced by a bot’s behavior that disrupts the communication between project maintainers
and contributors.

Although we considered annoying bot behaviors as a source of noise, the perception
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of such noise varies. Although the overuse of bots potentializes the noise, as also noticed
by Erlenhov, Neto, et al. (2016), we found that noise perception also depends on the
experience and preferences of the developer interacting with the bot. For example, while
a new contributor may bene�t from receiving one or more detailed bot comments with
guidance or feedback, an experienced maintainer may feel frustrated and annoyed by
seeing and receiving frequent noti�cations from those verbose comments. Furthermore,
noise perception also relies on the di�erences in the developers’ cognitive style and on the
limitations humans face to cope with information. For example, Information Processing
Theory, proposed by Miller (1956) in the �eld of cognitive psychology, describes the lim-
ited capacity of humans to store current information in memory. Individuals will invest only
a certain level of cognitive e�ort toward processing a set of incoming information.

A main complaint about noise from developers is the noti�cation overload from bots
interrupting the development work�ow. Other studies focusing on a single bot also reported
that developers can be overwhelmed by bot noti�cations (Brown and Parnin, 2019;
Mirhosseini and Parnin, 2017; Peng, Yoo, et al., 2018; Peng and Ma, 2019). According
to Erlenhov, Neto, et al. (2016), there is a trade-o� between timely bot noti�cations
and frequent interruptions and information overload. Our �ndings provide further detail
on how developers deal with those noti�cations and the impacts on the development
work�ow. Developers deemed noti�cation overload as a signi�cant problem, since they
already receive a large number of daily noti�cations. On GitHub speci�cally, Goyal et al.

(2018) found that active developers typically receive dozens of public event noti�cations
each day, and a single active project can produce over 100 noti�cations per day. The
CSCW community for decades has been investigating awareness mechanisms based on
noti�cations (Simone et al., 1995; López and Guerrero, 2016), which have not been yet
explored by social coding platforms. As pointed out by Iqbal and Horvitz (2010), users
want to be noti�ed, but they also want to have ways to �lter noti�cations and determine
how they will be noti�ed. I. Steinmacher, Chaves, et al. (2013) has performed a systematic
literature review on awareness support in distributed software development, which can
be used to inspire the design of appropriate awareness mechanisms for social coding
platforms.

Our interviewees mentioned the direct e�ects of information overload on their commu-
nication, including di�cultly in managing the incoming information and the interruption
in the �ow of the conversation, which might incur the loss of important information. These
e�ects of information overload have been already observed in teams that collaborate and
communicate online (Bawden and Robinson, 2009; Jones et al., 2004; Nematzadeh et al.,
2016). According to Nematzadeh et al. (2016), both the structure and textual contents
of human conversation may be a�ected by a high information load, potentially limiting
the overall production of new information in group conversations. In the context of our
study, this change in the conversational dynamics described by Nematzadeh et al. (2016)
can impact the overall engagement of contributors and maintainers when discussing pull
requests. Further, Jones et al. (2004) proposed a theoretical model on the impact on message
dynamics of individual strategies to cope with the information overload. According to
Jones et al. (2004), as the information overload grows, users tend to focus on and respond
to simpler information, and eventually cease active participation.
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4.3.1 Implications
The results of our study can help the software bot community improve the design

of bots on ethical and interaction levels. In the following, we discuss how our results
lead to practical implications for practitioners as well as insights and suggestions for
researchers.

Implications for Bot developers: On the path toward making bots more e�ective for
communicating with and helping developers, many design problems need to be solved.
Any developer who wants to build a bot for integration into a social coding platform
�rst needs to consider the impact that the bot may have on both technical and social
contexts. Based on our results, further bot improvements can be envisioned. One of the
biggest complaints about bot interaction is the repetitive actions they perform. In this
way, to prevent bots from introducing communication noise, bot developers should know
when and to what extent the bot should interrupt a human (Liu et al., 2020; Storey,
Serebrenik, et al., 2020). In addition, bot developers should provide mechanisms to enable
better con�gurable control over bot actions, rather than just turn o� bot comments. Further,
these mechanisms need to be explicitly announced during bot adoption (e.g., noiseless
con�guration, preset levels of information). Another important aspect of bot interaction
is the way bots should display information to the developer. Developers often complain
about bots providing verbose feedback (in a comment) instead of just status information.
Therefore, bot developers also should identify the best way to convey the information
(e.g., via status information, comments).

Another point to be considered is that bots spamming repositories was one of the most
mentioned ethical challenges by OSS maintainers. It is important for bot developers to
design an opt-in bot and provide maintainers control over bot actions. In addition, our
study results underscored that some developers feel uncomfortable interacting with a bot.
Human users can hold higher expectation with overly humanized bots (e.g., bots that say
“thank you”), which can lead to frustration (Gnewuch et al., 2017).

Implications for Social Coding Platforms: Because of the growing use of bots for
collaborative development activities (Erlenhov, Oliveira Neto, et al., 2019), a prolifer-
ation of bots to automate software development tasks was expected. Recently, GitHub
introduced GitHub Actions3, a feature providing automated work�ows. These actions
allow the automation of tasks based on various triggers and can be easily shared from
one repository to another. However, the way these actions communicate in the GitHub
platform is the same as bots (Kinsman et al., 2021), which can lead to the same interaction
challenges presented in this study.

Our �ndings also reveal that there are some limitations imposed by the GitHub platform
that restrict the design of bots. In short, the platform restrictions might limit both the
extent of bot actions and the way bots communicate. It is essential to provide a more
�exible way for bots to interact, incorporating rich user interface elements to better engage
users. At the same time, there is a need for well-de�ned governance roles for bots on
GitHub, as already established by Wikipedia (Müller-Birn et al., 2013). Therefore, it is

3 https://github.com/features/actions

https://github.com/features/actions
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important that bots have a documentation page that clearly describes their propose and
what they can do on each repository. Also, it is important to have easy mechanisms so
project maintainers can turn o� or pause a bot at any time.

Based on the premise that users would like to have better control over their noti�ca-
tions (Iqbal and Horvitz, 2010), GitHub should also provide a mechanism to �lter out
real noti�cations from bot ones. This would facilitate the management of bot noti�cations
and avoid wasting developers’ time �ltering non-humans content. Further, the detection
of non-human noti�cations would help developers identify pull requests that are merely
spam.

Implications for Researchers: We identi�ed a set of 25 challenges to developing,
adopting, and interacting with bots on social coding platforms. Part of these challenges can
be addressed by leveraging machine learning techniques to enrich bots. Thus, we believe
that there is an opportunity for future research to support OSS projects by developing
smarter bots, thereby providing better human-bot communication. For example, bots could
understand the context of their actions and provide actionable changes or suggestions
for developers. To design e�ective bots to support developers on OSS projects, there is
room for research on how to combine the knowledge on building bots and modeling
interactions from other domains with the techniques and approaches available in software
engineering.

Considering that bot output is mostly text-based, how bots present the content can
highly impact developers’ perceptions (Liu et al., 2020). Still, as aforementioned, the
developers’ cognitive styles might in�uence how developers interpret the bot comments’
content. In this way, future research can investigate how people with di�erent cognitive
styles handle bot messages and learn from them. Future research can lead to a set of
guidelines on how to design e�ective messages for di�erent cognitive styles and developer
pro�les. Further, it is also important to understand how the content of bot messages in�u-
ences developers’ emotions. To do so, researchers can analyze how developers’ emotions
expressed in comments changed following bot adoption.

Another challenge is related to the information overload caused by bot behavior on
pull requests, which has received some attention from the research community (Wessel,
Souza, et al., 2018; Wessel and I. Steinmacher, 2020; Erlenhov, Neto, et al., 2016), but
remains a challenging problem. In fact, there is room for improvement on human-bot
collaboration on social coding platforms. Possible future research can leverage noise theory
to better support bots’ social interaction in the context of OSS. In addition, when they
are overloaded with information, teams must adapt and change their communication
behavior (Ellwart et al., 2015). Therefore, there is also an opportunity to investigate
changes in developers’ behavior imposed by the e�ects of information overload.

4.4 Limitations and Threats to Validity
As any empirical research, our research presents some limitations and potential threats

to validity. In this section, we discuss them, their potential impact on the results, and how
we have mitigated these limitations.
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Scope of the results: Our �ndings are grounded in the qualitative analysis of data from
practitioners who are experienced with bots on the GitHub platform. Hence, our theory of
noise introduced by bots may not necessarily represent the context of other social coding
platforms, such as GitLab and Bitbucket.

Data representativeness: Although we interviewed a substantial number of developers,
we likely did not discover all possible challenges or provide full explanations of the
challenges. We are aware that each project has its singularities and that the OSS universe
is huge, meaning the bots’ usage and the challenges incurred by those bots can di�er
according to the project or ecosystem. Our strategy to consider di�erent developer pro�les
aimed to alleviate this threat, identifying recurrent mentions of challenges from multiple
perspectives. Our interviewees were also diverse in terms of the number of years of
experience with software development and bots.

Information saturation: We continued recruiting participants and conducting inter-
views until we came to an agreement that no new signi�cant information was found. As
posed by Strauss and Corbin (A. Strauss and Juliet M Corbin, 1997), sampling should be
discontinued once the collected data is considered su�ciently dense and data collection
no longer generates new information. As previously mentioned, we also made sure to
interview di�erent groups with di�erent perspectives on bots before deciding whether
saturation had been reached. In particular, we interviewed bot developers and developers
who are contributors and/or maintainers of OSS projects. Although we interviewed only 3
contributor-only developers, the analysis of their interviews did not provide new insights
when compared to the maintainers who were also contributors.

Reliability of results: To increase the construct validity and improve the reliability
of our �ndings, we employed a constant comparison method (Glaser and Anselm L
Strauss, 2017). In this method, each interpretation is constantly compared with existing
�ndings as it emerges from the qualitative analysis. In addition, we also conducted member-
checking. During member-checking, participants con�rmed our interpretation of the
results, requesting only minor changes.

4.5 Final Considerations
In this chapter, we investigated the challenges of using bots to support pull requests. We

conducted 21 semi-structured interviews with open source developers experienced with
bots. We found several challenges regarding the development, adoption, and interaction
of bots on pull requests of OSS projects.

Among the existing challenges, the introduction of noise is the most pressing one.
Developers frequently complained about annoying bot behaviors on pull requests, which
can be perceived as noise. Noise leads to information overload, which disrupts both human
communication and development work�ow. Towards managing the noise e�ects, project
maintainers often take some countermeasures, including re-designing the bot’s interaction,
re-con�guring the bot, and not watching a repository. Compared to the previous literature,
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our �ndings provide a comprehensive understanding of the interaction problems caused
by the use of bots in pull requests.

Next, we use the �ndings from noise theory to ground the creation and evaluation of
design strategies to mitigate the information overload generated by annoying bot behaviors.
In the following chapter, we present the concept and preliminary evaluation of a meta-bot
to mediate the action of other bots on pull requests.
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Chapter 5

Designing Strategies to Mitigate
Noise

In the study presented in Chapter 4, we found that the noise introduced by bots leads
to information overload, which interferes with how humans communicate, work, and
collaborate on social coding platforms. In other domains, as it is hard to change third-party
bots, researchers have proposed meta-bots to integrate and moderate the interactions of
multiple bots (Sadeddin et al., 2007; Dagli, 2019; Candello, Vasconcelos, et al., 2017).
We envision a meta-bot as a promising approach to mitigate the information overload
from existing GitHub bots. Considering this context, the main goal of this study is to elicit
design strategies to overcome the information overload caused by bots on pull requests by
means of a meta-bot. Speci�cally, in this chapter we investigate the following research
question:

RQ. What design strategies can potentially reduce the noise created by bots on pull re-

quests?

To answer this research question, we conducted an empirical study to assess a pre-
liminary version of the meta-bot, which aggregates the outcomes of other bots on a pull
request. Afterwards, we applied Design Fiction (Blythe, 2014) as a participatory design
method. This technique is used to probe, explore, and critique future technologies (Blythe,
2014). We recruited practitioners, including open-source maintainers, contributors, bot
developers, and bot researchers, to act as designers in the early stages of the envisioned
meta-bot conception. We presented to participants a �ctional story of a meta-bot capable
of better supporting developers’ interactions on pull requests, and operating as a mediator
between developers and the existing bots. Participants answered questions to complete
the end of the �ctional story, raising concerns about the use of bots and discussing the
design strategies for the meta-bot.
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5.1 Preliminary Conception and Evaluation of the
Meta-bot

The main goal of this preliminary investigation is to compare the way meta-bot
display the information (i.e. grouping and categorizing the bots’ outputs) with the existing
approach (i.e. multiple bots commenting on the pull request). To achieve our goal, we
�rst implemented the meta-bot. Afterwards, we performed a user study to investigate the
developers’ perception and understanding of the bots’ information with and without the
meta-bot acting as a mediator. The results presented in the following sections resulted
from a graduation thesis advised by the author of this dissertation.

5.1.1 Research Design

We implemented and evaluated a meta-bot that aggregates information from various
bots on a pull request. Next, we describe the concept, preliminary implementation, and
evaluation of the meta-bot.

Meta-bot concept

The meta-bot concept was inspired by Sadeddin et al. (2007) work. In order to deal
with several responses from di�erent bots, Sadeddin et al. (2007) showed that a meta-bot
would obtain product information from several shopping bots, and then summarize and
present it to the user. The concept of meta-bot is also present in the literature of software
agents. Generalist agents are also referred to as Super Bots or meta-bots (Dagli, 2019).
This is because they often combine multiple tasks and functionalities of specialist agents
into a single agent. We hypothesize that a meta-bot can mitigate the information overload

created by other bots around pull requests.

Essentially, the meta-bot way to solve interaction problems is by mediating the action of
other bots used on pull requests. It would operate as a mediator between human developers
and the bots in a repository. Di�erent from other GitHub bots, the meta-bot would not
handle speci�c tasks on pull requests. Instead, the meta-bot would provide additional value
to the interaction of already existing bots. Moreover, once the meta-bot is integrated into
a GitHub repository, it would be aware of the task-oriented bots adopted to handle the
pull requests. By providing a centralized control, meta-bot would be capable of integrating
and orchestrating those bots.

A way to mitigate communication noise is by restricting inconvenient bots to interact
directly on pull requests. As the meaning of inconvenience can vary from project to project,
the meta-bot would provide an interface that each project can previously con�gure bots’
restrictions. Therefore, once a new pull request is opened, the meta-bot would handle bots’
response based on the restrictions by aggregating the response of bots allowed to interact
on that pull request.
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Meta-bot implementation

We implemented the meta-bot using Probot,1 a framework for building applications
for GitHub in Node.js. We used it to facilitate the integration between our meta-bot and
GitHub. The meta-bot functionality consists of consuming two types of events, “pull
request opened” and “comment created.” Figure 5.1 shows an overview of the meta-bot
implementation.
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Figure 5.1: An overview of the meta-bot implementation

Due to several technical limitation imposed by the GitHub platform and the GitHub API,
we used an strategy of deleting the bot comment once they post it in the pull request. As
far as we know, the only way of preventing a bot from commenting directly in the GitHub
is by modifying its source code. However, there is also a limited amount of open-source
bots. Considering this, once a pull request is opened, the bots installed in the repository
perform their tasks and create a comment with their results. The meta-bot then performs
two actions: i) saves the bot comments in a database; ii) deletes the original comment.
Before deleting a comment, the meta-bot needs to check whether the event originates
from a bot or a human user. If it is from a bot, the comment is deleted and saved in the
database. After its deletion, GitHub introduces the message: “metabot deleted a comment
from bot-name” in the pull request timeline. This message exists to maintain traceability
of the actions that occurred over the pull request’s life. However, they contribute to
information overload, making it an obstacle to the meta-bot’s proposal. We developed
an ad-hoc solution using the Violentmonkey2 browser extensions to hide this message
throughout our experiment.

If there is already a comment from the meta-bot in this pull request, three additional
actions occur: iii) retrieves all comments saved in the database; iv) aggregates the retrieved
comments; v) updates the existing partial comment with the new additions. The meta-bot
waits ten seconds, retrieves all comments saved in the database and aggregates them in a
single comment. This way, a partial comment is created with the content coming from the

1 https://probot.github.io/docs/
2 https://violentmonkey.github.io/
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bots that commented in the ten seconds window. Finally, the meta-bot posts the comment
in the GitHub pull request and updates it as more bots �nish their processing. Updating
the existing meta-bot comment is necessary because not all bots installed in the repository
can comment within the same time window.

The information in the meta-bot’s comment is categorized by labels created according
to the user’s preferences. The developer can change or create them by modifying the
repository con�guration �le according to their preferences. The partial comment turns
into a complete comment when all bots comment, as shown in Figure 5.2.

.

Figure 5.2: Meta-bot’s complete comment in a pull request

Meta-bot evaluation

To assess the meta-bot in a real-world scenario, we rely on Reakit3 repository. Reakit
is an open-source library used to create React applications with a focus on accessibility.
This project uses four bots to support the pull request review process. Each of them is
responsible for a di�erent task; however, all bots report their outputs using comments on
the pull request. The bots supporting the project’s pull request are as follows:

• CodesandBox – provides an isolated test environment for the validation of the
code modi�ed by the pull request.

• Compressed-size-action – reports data referring to the di�erence in size of �les
modi�ed in the pull request.

• Codecov bot – provides code coverage metrics, o�ering tools for comparing reports
between pull requests.

• Reakit bot – a project speci�c bot implemented to report the deploy information.

3 https://github.com/reakit/reakit

https://github.com/reakit/reakit
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Since Reakit bot is a project speci�c bot, and it is not accessible in the GitHub Market-
place, we could not use the Reakit bot in the experiment. Therefore, we replace the Reakit
bot with two well-known and highly utilized bots:

• Request-info – requires more information on newly opened pull requests that
contain the default title or blank description.

• TODO bot – creates comments on a PR based on the pending comments that exist
in the code submitted in the pull request.

We created two scenarios for the experiment. Scenario 1 consists of two pull requests,
A and B. Both are based on Reakit’s pull request 7964. A developer created it in response
to issue 7455, a proposal to implement new features. All comments from humans and
bots have been replicated in A and B with the distinction that B has its bots comments
aggregated by our meta-bot. In turn, Scenario 2 is composed of pull requests C and D;
both based on the pull request 8286, a bug �x described in issue 8277. As in Scenario 1, all
comments from humans and bots were replicated in C and D, distinguishing that C has
the bot comments aggregated by the meta-bot.

Participants recruitment. Before recruiting the participants, we conducted sandbox
experiments with one PhD student and four developers who are novices contributing to
open source projects on GitHub to validate the script and con�rm whether the experiment
would �t in the time slot. For the experiment, 22 bachelor’s and 3 master’s students in
Computer Science were recruited. Of the undergraduate students, there are 9 in Computer
Science and 13 in Software Engineering. They were expected to have low or no experience
with GitHub bots.

In total, we conducted 25 sessions with participants identi�ed as P1 - P25. Table 5.1
presents the participants’ demographics. Their experience contributing to OSS varies
between none and experienced (with low experience on average). The experience with
GitHub, on the other hand, varies from low to expert (with a reasonable experience on
average). Finally, their experience with GitHub bots varies between none and experienced
(with no experience on average). In addition, six participants reported having some ex-
perience with one or more GitHub bots, namely: dependabot, Vercel, analysis-bot and
facebook-github-bot. All other participants (19) reported no previous contact with GitHub
bots.

Experiment execution. We conducted the study via video calls since it enables us to
guide participants throughout the experiment, which guarantees they follow the script
order. Along with the invitation to the video call, the participants received by email
instructions for the experiment and a survey with questions.

To mitigate bias, the distribution of scenarios and their respective pull requests occurred
alternately. All participants started the experiment with Scenario 1, afterwards moved to

4 https://github.com/reakit/reakit/pull/796
5 https://github.com/reakit/reakit/issues/745
6 https://github.com/reakit/reakit/pull/828
7 https://github.com/reakit/reakit/issues/827

https://github.com/reakit/reakit/pull/796
https://github.com/reakit/reakit/issues/745
https://github.com/reakit/reakit/pull/828
https://github.com/reakit/reakit/issues/827


76

5 | DESIGNING STRATEGIES TO MITIGATE NOISE

Participant Course Level Experience level with*
ID OSS GitHub GitHub Bots

P1 Computer Science Master Low Low None
P2 Computer Science Master Low Experienced None
P3 Computer Science Master None Reasonable Low
P4 Computer Science bachelor Low Experienced Low
P5 Software Engineering bachelor None Reasonable None
P6 Software Engineering bachelor None Experienced None
P7 Software Engineering bachelor None Low None
P8 Computer Science bachelor None Reasonable None
P9 Software Engineering bachelor Low Experienced None
P10 Software Engineering bachelor None Experienced None
P11 Computer Science bachelor None Reasonable None
P12 Software Engineering bachelor Reasonable Experienced Expert
P13 Computer Science bachelor Low Reasonable None
P14 Software Engineering bachelor Low Reasonable None
P15 Software Engineering bachelor Experienced Experienced Low
P16 Software Engineering bachelor Low Low None
P17 Computer Science bachelor Experienced Expert None
P18 Software Engineering bachelor None Experienced Low
P19 Computer Science bachelor Experienced Expert Experienced
P20 Computer Science bachelor None Reasonable None
P21 Software Engineering bachelor Low Reasonable None
P22 Software Engineering bachelor Experienced Experienced Low
P23 Computer Science bachelor Low Experienced None
P24 Software Engineering bachelor Low Reasonable None
P25 Computer Science bachelor Low Reasonable None

* None < Low < Reasonable < Experienced < Expert

Table 5.1: Demographics of participants

Scenario 2. More speci�cally, thirteen participants started with pull request A from Scenario
1 (1-A), while twelve participants started with pull request B from the same scenario (1-B).
When starting the session, we contextualized the participant about a scenario where they
contributed to Reakit, submitted a pull request, and waited for some change in the status
quo. This contribution concerns the implementation of a new functionality described in a
current issue in the repository. The participant received a link to the pull request and was
guided to use the information presented to identify its current status and the next steps to
be taken for the pull request to be accepted by the maintainers. At the end of the analysis,
we redirect the participant to a survey to capture their perceptions. After responding to
the survey, we moved to Scenario 2. Once again, we guided the participant to look at the
pull request to understand its current status. As for scenario 1, we redirected participants
to a survey after they were done with the pull request analysis. This �nal survey aimed
at comparing the two approaches: meta-bot and multiple bots. The group of participants
who received 1-A and 2-C is referred to as Group 1 (G1), while 1-B and 2-D as Group 2
(G2).

Data Analysis. We used a card sorting approach (Zimmermann, 2016) to qualitatively
analyze the answers to the open-ended questions. Two researchers conducted card sorting
in two steps. In the �rst step, each researcher analyzed the answers (cards) independently
and applied codes to each answer, sorting them into meaningful groups. This step was
followed by a discussion meeting until reaching a consensus on the code names and
categorization of each item. At the end of this process, the answers were sorted into
high-level groups. In the second step, the researchers analyzed the categories, aiming
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to re�ne the classi�cation and group-related codes into more signi�cant, higher-level
categories and themes. We used open card sorting, meaning we had no prede�ned codes
or groups; the codes emerged and evolved during the analysis process. In addition, we
quantitatively analyzed closed-ended questions.

5.1.2 Results
In this section, we focused on the results obtained comparing both approaches: using

multiple bots versus using the meta-bot. Figures 5.3 and 5.4 report the main results.

.

Figure 5.3: Comparison results from Group 1

.

Figure 5.4: Comparison results from Group 2

Most participants in G1 and G2 (77% and 58%, respectively) pointed out the meta-bot
approach as the option that allows obtaining information quicker. Also, most participants
(77 % in G1 and 67 % in G2) found the meta-bot approach as the fastest way to �nd
information regarding the analyzed scenario. In G1, a participant described a situation to
justify his preference for the meta-bot: “if I am responsible for deploying the application, I

will know accurately and quickly where to look for information regarding my responsibilities

in that repository [...]”. In G2, a participant reports that in the meta-bot, the “information

[is] aggregated in a comment containing all the relevant information generated by the bot”,
which facilitates the access to such information.

Participants had di�erent opinions related to which approach made it easier to under-
stand the information. In G1, participants reported that the organization of the information
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has not a�ected their understanding. One participant mentioned that in situations where
they know the category of the problem reported by the bot (e.g. deploy, critical), they
prefer the meta-bot because of the comment categorization. However, if they need to
analyze the entire pull request, they would prefer the various bots as they present the
information along the pull request timeline. In G2, 50% of the participants found the
meta-bot’s approach as the easiest to understand the problem reported by the bots. One
participant mentioned that the meta-bot “has the same bene�ts as the various bots, however

it aggregates the information, which helps to understand the information”.

In both G1 and G2, the participants (85% and 50%, respectively) said that the interaction
with several bots made it challenging to search for information. Furthermore, in G1, most
participants (62%) stated that when interacting with the meta-bot, it was easier to identify
the bots present in the repository. A participant from this group reported that the way the
meta-bot comment was structured drew attention and highlighted the bots commenting in
the pull request. In contrast, in G2, a more signi�cant number of participants (50%) stated
that it was easier to identify the bots present in the approach with several bots.

Concerning the bene�ts of the meta-bot, the most frequent answer refers to its ability to
facilitate �nding important information (8 and 4 mentions, in G1 and G2 respectively).
The participants justi�ed this by mentioning the meta-bot reduce the information over-
load (3 mentions in G1), categorize bot comments (5 and 4 mentions, in G1 and G2
respectively) and aggregate of comments (5 mentions in both groups). One participant
stated that “for people used contribute to open-source projects daily, the [meta-bot] keeps

the information aggregated into a single comment, giving more visibility to developers’ com-

ments.”

A preliminary evaluation of the meta-bot concept showed that aggregating bot com-
ments was helpful to facilitate developers’ to �nd the appropriate information from
bots interacting on a pull request. However, as the meta-bot maintains the other bot
comments as-is, it might not a�ect the understanding of the comment message when
comparing to the multiple bots approach.

5.2 Participatory Design Fiction
In the following Sections, we present the research design and �ndings from our Partic-

ipatory Design Fiction study.

5.2.1 Research Design
We devised a study8 split into two phases, as depicted in Figure 5.5. We started by

conducting a series of Design Fiction sessions with practitioners experienced with bots,
aiming to explore strategies to overcome the information overload that bots can cause.
In Phase II, we prototyped a set of emerging design strategies and collected feedback
from practitioners. In the following subsections, we focus on the presentation of the

8 The research protocol was approved by our institutional review board
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participatory design �ction methodology (Phase I). We describe the method and results
from Phase II in Section 5.2.3.

Phase I - Participatory Design Fiction

Fictional 
Story

Creation

Sandbox
Sessions

Participants
Recruitment

Qualitative
Analysis

Meta-bot
Concept

Envisioned
Strategies

Phase II - Suitability Study

Prototyping Semi-structured
Interviews + Survey

Data
Analysis

Envisioned
strategies from
Design Fiction

Tim
e

Noise 
theory

Design 
Fiction

Sesions

Suggested
Improvements

Figure 5.5: Overview of the Research Design

Phase I: Research Approach

We applied Design Fiction method (Blythe, 2014; Sterling, 2009), which has been
broadly used in the Human-Computer Interaction �eld (Encinas and Blythe, 2016; M.
Muller and Erickson, 2018; Blythe and Encinas, 2016). The Design Fiction method
was �rst de�ned by Sterling (2009) as “the deliberate use of diegetic prototypes to suspend

disbelief about change.” Design �ction can be described as making use of practices such
as prototyping and narrative elements to envision and explain plausible futures, while
re�ecting upon the present world (Blythe, 2014; Lupton, 2017; Harmon et al., 2017; Enci-
nas and Blythe, 2016; Lindley et al., 2016; M. Muller and Erickson, 2018; Linehan
et al., 2014). Researchers have been employed this method in an empirical way to elicit
information from participants (Noortman et al., 2019; Candello, Pichiliani, et al., 2019)
and communicate their insights (Fritsch et al., 2013; Kirman et al., 2013). The specula-
tive nature of this technique ampli�es critical views of current social and technological
developments, creating a �ctional context narrated through designed artifacts (Coulton
et al., 2017). This approach facilitates exploring boundless thoughts and open discussions
on a particular subject (Blythe and Encinas, 2016). For instance, many researchers use
design �ction to anticipate issues (Blythe and Encinas, 2016), while others focus on
values related to new technologies (M. Muller and Liao, 2017; Cheon and Su, 2018) and
anticipate users’ needs (Cheon and Su, 2017; Encinas and Blythe, 2016; Noortman et al.,
2019).

Past studies applied Design Fiction as a participatory method to unveil design strategies
for development technologies in a narrative format (Candello, Pichiliani, et al., 2019;
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Nägele et al., 2018; Forlano and Mathew, 2014). According to M. J. Muller (2007),
narratives in participatory work may be told by users as part of their contribution to
specifying what products or services should do. Candello, Pichiliani, et al. (2019), for
example, applied Design Fiction to explore the expectations of science museum guides
when teaching robots how to answer museum visitors questions. Candello, Pichiliani,
et al. (2019) crafted a �ctional story describing the dilemma of buying such robots to work as
guides and participants answered questions about their expectations about these futuristic
robots. Following Candello, Pichiliani, et al. (2019)’s approach, we used narratives
and follow-up questions to speculate on the design of the meta-bot for social coding
platforms.

Design Fiction distinguishes itself in the way the designed artifacts bring context-
speci�c meaning and social relevance (Bleecker, 2004) to the envisioned technol-
ogy (Kirby, 2010). In this work, the use of Design Fiction enables the practitioners to
envision a bot mediator and its environment, rather than focusing on the current technical
limitations.

Phase I: Method

In the following, we describe the �ctional story we used and how we conducted
sandboxing, recruiting, and analysis for Phase I.

The Fictional Story. The story description follows the key idea raised by the noise
theory of Wessel, I. Wiese, et al. (2021): information overload generated by the bots’ inter-
action on pull requests disrupts both human communication and development work�ow.
The story describes the experience of an open-source maintainer who adopted bots to
reduce her workload on pull request activities. After adopting a few bots, the information
overload generated by the bots’ noise became evident to other team members. At that
point, her team brainstormed and decided to apply some countermeasures to overcome
the noise. Their idea was to implement a meta-bot to act as a mediator between the
existing bots and human developers. We told participants that the �ctional story takes
place approximately ten years in the future to let them be less constrained by current
technological limitations.

After creating the �ctional story, we produced a 3-minute animated video to report it
to our participants in a standardized way. The story’s characters are Ada, an overwhelmed
open-source maintainer, and three members of her team: Ellie, John, and Anne. Following,
we present the �ctional story that served as a baseline for the video creation. In addition,
we made the video publicly available within the supplemental material.9

The Fiction: It is the year 2030. Ada is a maintainer of an open-source software hosted on
GitHub called FutureX. Since FutureX receives thousands of monthly contributions, she
spends considerable time maintaining issues and reviewing contributions. To reduce her
workload with repetitive tasks and help her be more proactive, Ada relies on more than ten
software bots to help her. One bot updates the project’s dependencies to the latest version

9 https://zenodo.org/record/5428540

https://zenodo.org/record/5428540
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when they become available, another bot makes contributors aware of code coverage, and
another bot closes pull requests that have been inactive (stale) for a long time.

Ada recognizes that these bots reduce her burden with repetitive tasks and speed
up the pull request review. However, she noticed that the other maintainers of FutureX
complain about bot annoying behavior.

“You are talking to the person who submitted the pull request and then a bot comes in

and adds information in the middle of your conversation” said Ellie.

John agreed. “I agree with Ellie. . . Sometimes the bot comments are really verbose and

overuse visual elements.”

“I feel the same,” said Anne agreeing with both Ellie and John, “these bots work a lot

and generate so many noti�cation for me to check.”

After discussing with other project members, Ada concluded that the most recurrent
problem is the introduction of noise into developers’ communication channels.

“The noise leads to an overload of information, which negatively impacts our communi-

cation and the development work�ow” complemented Ada.

Ada and her team started to think about a Super Bot to mitigate the noise caused by
the existing bots. The Super Bot would orchestrate and mediate the action of other bots
used on pull requests. You heard about this Super Bot and decided to help Ada’s team to
design it.

Sandbox Interviews We conducted sandbox sessions with a small sample of partici-
pants to adjust the �ctional story and the session instrument. We invited three participants
who had experience contributing to and maintaining open source projects on GitHub.
We asked for feedback on the 3-minute video, verifying whether the participants could
capture the intended message of the �ctional story. In addition, we validated the script and
con�rmed whether the session would �t in a 1-hour time slot. The sandbox participants
watched the video, answered all the questions, and provided us with feedback about
the �ow of the script. The participants suggested a few minor adjustments, which were
incorporated to the instruments. We also analyzed the answers to ensure that they provided
data to answer our research question. The data collected during these sandbox sessions
were discarded.

Participants Recruitment We recruited 32 practitioners experienced with OSS bots
(contributors, maintainers, bot developers, or researchers). We employed three strategies
to recruit participants. First, we leveraged our existing connections to the OSS community
(n=20 participants, ≃62.5% of the sample). We also advertised the call on social media
platforms frequently used by developers (Singer et al., 2014; Storey, Treude, et al., 2010;
Aniche et al., 2018), including Twitter, Facebook, and Reddit (n=2, ≃6.5% of the sample).
Finally, we asked participants to refer us to other quali�ed participants (n=10, ≃31% of the
sample).

We conducted the design �ction sessions with 32 participants—identi�ed here as P1–
P32. Table 5.2 shows the demographic attributes of our participants. The majority (28)
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Participant Gender OSS Experience Location Experienced with bots as
ID (years) Bot dev. Maintainer Contributor Researcher

P1 Man 5-10 Europe 3 3 3 3

P2 Man 4-5 South America 3

P3 Man > 10 Europe 3 3

P4 Woman 1 North America 3 3 3

P5 Man 4-5 South America 3 3

P6 Man 4-5 North America 3 3 3 3

P7 Man 5-10 Europe 3 3

P8 Man 4-5 North America 3 3 3

P9 Man > 10 South America 3 3 3 3

P10 Man 3 North America 3 3 3 3

P11 Non-Binary > 10 North America 3 3

P12 Man > 10 North America 3 3 3

P13 Man 5-10 North America 3 3 3

P14 Woman 3 Europe 3

P15 Man 4-5 South America 3 3

P16 Man > 10 North America 3 3 3

P17 Man 1 South America 3

P18 Man 4-5 Europe 3 3 3

P19 Man 3 Europe 3 3

P20 Man 2 South America 3 3

P21 Woman 4-5 Europe 3 3

P22 Man 5-10 North America 3 3 3

P23 Man 5-10 South America 3 3 3

P24 Man 5-10 Europe 3 3 3

P25 Man > 10 North America 3 3 3

P26 Man 3 Europe 3 3 3

P27 Man 5-10 Europe 3 3 3

P28 Man 4-5 Europe 3 3

P29 Man 5-10 Europe 3

P30 Woman Zero Europe 3

P31 Man 1 Europe 3 3

P32 Man 3 North America 3 3

Table 5.2: Demographics of Design Fiction Participants

are men (≃85%), while three are women (≃12%), and one is non-binary (≃3%). Participants
are geographically distributed across Europe (EU, ≃44%), North America (NA, ≃34%), and
South America (SA, ≃22%). Their experience with open source software development is
diverse: between 4 and 5 years (≃28%), 5 and 10 (≃24%), more than 10 (≃18%), 3 years (≃15%),
1 year (≃9%), 2 years (≃3%), and zero (≃3%). When it comes to their experience with bots,
28 (≃87.5%) are experienced with bots as an open-source project maintainer, 25 (≃78.1%)
as a contributor, 13 (≃40.6%) as a researcher, and 13 (≃40.6%) as a bot developer.

Design Fiction Sessions We conducted a series of synchronous design �ction sessions.
The motivation behind this approach, instead of asking the participants to watch the
story and write its end (M. Muller and Erickson, 2018; Candello, Pichiliani, et al.,
2019), was to engage the participants and ask questions during and after the debrie�ng.
The sessions provided the �exibility to delve deeper into unforeseen information and
enabled researchers to explore topics that emerged during the session (Hove and Anda,
2005). Before each session, we shared a consent form with the participants asking for
their permission to video record. We also sent our participants a short survey containing
demographic questions to capture their familiarity with open-source development and
bots on GitHub.

We started the sessions with a short explanation about the research objectives and
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guidelines, giving the participant an overview of the Design Fiction approach. The par-
ticipant then watched the 3-minute �ctional story’s video. After watching the video, we
clari�ed questions and followed up with four scenarios to explore how they would design
the meta-bot to mitigate noise. We based the scenarios in the noise theory presented by
Wessel, I. Wiese, et al. (2021). Next, we present the investigated scenarios:

Scenario One (S1) – Newcomers. In this scenario, we describe a situation that occurs
when a developer submits their �rst contribution to an open-source project. As soon
as the newcomer submits a pull request, bots start posting their respective comments.
Newcomers might perceive the bot information as noise because of their lack of experience
dealing with bots’ messages.

Scenario Two (S2) – Noti�cations’ interruptions. We also created a scenario to describe
when a core developer is working on a priority task and does not want to be interrupted.
As described in the noise theory we drew from (Wessel, I. Wiese, et al., 2021), in some
cases the noise leads to a noti�cation overload that interrupts the development work�ow
at the wrong time.

Scenario Three (S3) – Information overload. This scenario represents the case when
bots in�ate pull requests with repetitive or verbose messages. According to Wessel, I.
Wiese, et al. (2021), this might occur for several reasons, including decisions inherent to
the bot design.

Scenario Four (S4) – Unexpected bugs or spam. Similar to the previous scenario, this
scenario describes a speci�c case of information overload when a bot performs an unso-
licited action on a pull request because of a bug or spam.

The participants acted as storytellers, answering questions to support the conclusion
of the �ctional story. For each scenario, we asked them to describe how they envision
the meta-bot in an ideal scenario, not limited by current technology. Depending on the
participants’ response, we followed up with speci�c questions: for example, asking for
more information about the the features that the participant mentioned. The detailed
session script is publicly available10. Each session was conducted remotely by the author
of this dissertation and lasted on average 54 minutes. The participants received a 25-dollar
gift card as a token of appreciation for their time.

Qualitative Analysis Each session recording was transcribed by the author of this
dissertation. To qualitatively analyze the session transcripts, we applied open and axial
coding procedures (A. L. Strauss and J. M. Corbin, 1998) throughout multiple rounds
of analysis. We started by applying open coding, whereby we identi�ed the envisioned
features for the meta-bot or its environment. The author of this dissertation conducted
a preliminary analysis, identifying the main codes. More speci�cally, the researcher per-
formed an iterative process of inductively coding one transcript at a time and built post-
formed codes as the analysis progressed and associated them to respective parts of the
transcripts. Then, the author and another experienced researcher discussed the emergent
codes and reached an agreement in weekly hands-on meetings. During these meetings, the

10 https://zenodo.org/record/5428540

https://zenodo.org/record/5428540
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researchers re�ned the code set by checking the code names, merging codes together, or
identifying a di�erent granularity level for a code. These discussions aimed to increase the
reliability of the results and mitigate bias (Patton, 2014). Then, the analysis was presented
and discussed with the other three researchers. During the data analysis process, we
employed a constant comparison method (Glaser and Anselm L Strauss, 2017), wherein
we continuously compared the emerging codes from one session with those obtained from
the previous ones. Afterward, the author further analyzed and revised the transcripts to
identify relationships between concepts that emerged from the open coding analysis (axial
coding).

We do not share the session transcripts due to con�dentiality reasons. However, we
made our complete code book publicly available within the supplemental material. The
code book includes all code names, descriptions, and examples of quotes.

5.2.2 Phase I: Design Fiction Findings
In this section, we present the strategies to mitigate bots’ noise derived from the

analysis of the participatory design �ction sessions (see Section 5.2.1). The participants
discussed several design strategies to mitigate noise created by bots, as presented in
Table 5.3. We organized those strategies in terms of the potential features for the meta-bot
and improvements for the underlining platform (GitHub). In summary, we found 22 de-
sign strategies, organized into �ve categories: information management (IMi), newcomers’

assistance (NAi), noti�cation management (NMi), spam and failures management (SMi),
and platform support (PSi). In the following, we present these �ve main categories. We
describe the categories in bold, and provide the number of participants we assigned to
each category (in parentheses).

Information management. The strategy summarization of bot comments (11) was
frequently mentioned by the participants as a way to mitigate information overload. Sum-
maries should be concise and report an overview of the pull request status: “Give me

a context report or summary. I expect the meta-bot to be just one particular comment with

some points. Just one comment with everything as a conscious report” [P26]. However, this
strategy also imposes some technical challenges when it comes to implementation. Accord-
ing to P31, “it is di�cult to summarize [other bot comments], because, although the message

is created by a bot, it’s supposedly based on a template.” In terms of its implementation, the
easiest strategy to reduce noise would be aggregating bot comments (9). In this speci�c
case, the meta-bot would merge bots outputs into a single comment on a pull request. This
strategy is usually mentioned in conjunction with summarizing the bots outputs: “it could

possibly summarize [bot comments] and put them in a single message” [P6]. In both cases,
the meta-bot creates a single output for all bots, however, it does not imply implementing
the merging strategy always based on the summarized version of each bot output.

Another strategy concerned the order that the information is presented to the develop-
ers. Participants suggest a prioritization of bot outputs within the summary the meta-bot
provides, such that the meta-bot has the capacity to treat some bot comments as more
important than others. Basically, participants mentioned two di�erent types of prioritiza-
tion: based on tasks (9) and based on issues (7). For the prioritization based on tasks,
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Meta-bot’s Design Strategies #

Information
Management

IM1. Summarization of bot comments 11
IM2. Aggregating bot comments 9
IM3. Prioritization based on tasks 9
IM4. Prioritization based on issues 7
IM5. Keep the most recent information 7
IM6. Categorization of bot comments 5
IM7. Interacting with users through natural language 4
IM8. Internationalization 2

Newcomers’
Assistance

NA1. Explaining rules, instructions, and requirements 8
NA2. Welcoming message 8
NA3. Provide information interactively 5
NA4. Newcomers pull request noti�cation 3

Noti�cation
Management

NM1. Notify through pre-speci�ed communication channel 8
NM2. Schedule bot noti�cations 7
NM3. Notify developers in their idle times 7
NM4. Notifying only interested developers 5
NM5. Do not notify maintainers until the condition is satis�ed 2

Spam and
Failures
Management

SM1. Prevent repetitive bot activities 8
SM2. Spam messages noti�cation 4
SM3. Bugs report 2

GitHub Interface’s Design Strategies #
Platform
Support

PS1. Separating bot comments 11
PS2. Bots con�guration dashboard 4

Table 5.3: Envisioned Design Strategies for the Meta-bot and the GitHub Platform (# = Number of

participants we assigned to each category)

the meta-bot would sort the most important bot comments based on the task implemented
in the pull request: “it would also be able to sort of �lter out what is useful and what is not

useful based on the task the developer is actually working on” [P10]. The prioritization might
also take into account the pull request problems raised by bots, sorting by the level of
criticality of bot noti�cations, as mentioned by P21: “if any critical problem happens, then

I would like to be noti�ed with a speci�c bot report, I would receive a critical noti�cation.”
To complement prioritization, �ve participants also suggested the categorization of bot
comments (5). The Meta-bot would group the bot outputs based on their types (e.g.,
testing, security, information) before reporting in the pull request. With a categorization
of bot comments, developers “know if [they] need[] to look at [a speci�c bot comment] or

not” [P27].

To avoid in�ating the pull requests with several comments from the meta-bot, one
suggested strategy is to keep the most recent information (7). Participants suggested
that the meta-bot creates a single comment and keeps updating it with new information
from other bots: “the meta-bot just creates one comment and keeps updating it” [P16]. It
should also keep the comment up-to-date: “if [the developer] commit[s] again, the meta-bot

updates the comment. If [the developer] �xes Lint’s errors, for example, the meta-bot will
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remove the warning from the comment.” [P23]

Participants also mentioned other additional aspects of the meta-bot communication
unrelated to mitigating noise. For example, participants envision the meta-bot interacting
with users through natural language (4) by providing an interface for communicating
with developers to understand their requests and answer their questions. To promote
diversity and inclusion, the meta-bot can provide Internationalization (2) and support
di�erent languages (e.g. German).

Newcomers’ assistance. The newcomers’ scenario we presented to participants led them
to think about how the information presented by the current bots might a�ect newcomers’
perceptions and success. As a result, we found four main strategies that might assist
newcomers, of which explaining rules, instructions, and requirements (8) was one
of the most frequent. According to participants, the meta-bot could guide the newcomers
and inform them about the project’s rules and the requirements to approve the pull request.
For example, P13 explains the importance of providing such explanations: “[the newcomers]

do not understand the rules yet and ... don’t understand which rules are important. ” Thus,
“the meta-bot would do an excellent job for a newcomer by explaining why these rules exist”
[P13]. The meta-bot could also refer to the contribution guidelines to assist a newcomer
developers’ �rst contribution, as well as include a welcoming message in the meta-
bot’s comment on newcomers’ pull request (8). The meta-bot might post a comment, for
example, “ ‘Hi, welcome! I just saw this is your �rst contribution. Are you aware of the rules

of this repository?’ or ‘the rules of this community’?” [P2]. These greetings could be used
“to let [newcomers] know that they are welcome into the community” [P10]; however, it is
also important to keep the message concise and direct: “the message should be short. If

newcomers see the bot several times in di�erent projects, it will annoy them, and they are

going to discard the whole information the bot provides.”

Concerning the strategies to display bot information to newcomers, participants en-
vision the meta-bot providing information interactively (5). As mentioned by P5, the
meta-bot might guide the new contributor by showing the information from other bots
“step by step.” Interviewees deemed this strategy a potential solution to reduce the impact of
receiving several di�erent bot noti�cations at once. P20 o�ered an exemplary case of how
this strategy would apply to a real scenario: “If the newcomer has not updated the README

or the documentation, it shows ‘You need to update the documentation’ and waits for the new-

comer to take action. When the newcomer �xes the documentation by creating a new commit,

the bot informs the documentation is now okay and then shows the next message.” Another
strategy regards notifying maintainers about new pull requests from newcomers
(3). Since newcomers might prefer other humans to interact, a few participants also see the
meta-bot as an approach to “ping a developer to look at it [newcomers’ pull request]” [P1]
aiming at “encouraging more human activity from the maintainer” [P6].

Noti�cation management. Participants also reported design strategies to allow the
meta-bot to control di�erent aspects of bots’ noti�cation. First, the meta-bot should
notify developers through a pre-speci�ed channel (8), which means it would send
the noti�cations wherever the developer wants to receive the noti�cation (e.g., email,
GitHub noti�cations). As mentioned by P1, this strategy would help the meta-bot to send
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the noti�cations to “a channel that the developers do not ignore.”

Participants also proposed strategies related to the frequency and timing of noti�cations.
One approach would be to schedule bot noti�cations (7), in which the meta-bot would
avoid notifying developers according to (customizable) timeframes indicating when they
do not want interruptions. This may be implemented, for example, using a “do not disturb”
[P8] mode. Another approach would be notify developers in their idle times (7). The
meta-bot would not interrupt the developers during critical tasks: “Do not notify the

developer if [the meta-bot] is aware that [the developer] is currently working. That is also

what other humans would not do” [P1]. In this approach the meta-bot would learn the
developers’ schedule and adapt to them. Another option is not to notify maintainers
until the condition is satis�ed (2). Therefore, the meta-bot would notify the developers
only when the prede�ned conditions are met, as stated by P16: “I want to be noti�ed

about new pull requests after all my tests have passed. And after the bots commented, and if

everything is green, then I want to be noti�ed.

To avoid overload with unrelated noti�cations, we found that it is also important
to notify only interested developers (5). The meta-bot should notify only developers
who are interested in monitoring activities related to a particular repository, issue, or
pull request. According to P25, for example, maintainers and contributors have di�erent
needs when it comes to being noti�ed by bots: “if I’m a contributor, I want to know that

noti�cation about my contribution. But as a maintainer, I don’t need to be reminded about

every contribution that happened when I release a new version of my project." [P25].

Spam and failures management. We also identi�ed three design strategies to provide
control over unforeseen problems created by bot interactions. To prevent repetitive bot
activities (8), the meta-bot bot would detect bots that are generating repetitive outcomes
and prevent them from acting on pull requests; this can avoid duplicate messages and
spam: “it has the ability to control which bots comment often, then it would be easy to say ‘no,

you already have this comment and I see that your next comment is exactly the same’ ” [P1].
There would be also a mechanism for spam messages noti�cation (5), wherein the meta-
bot would notify developers about repetitive bot messages that might be considered spam.
And, if there is a bug with a speci�c bot, the meta-bot can “contact the bot maintainers”
[P10] to provide a bug report (3).

Platform support. Participants envision a few modi�cations in the platform inter-
face to improve its integration with bots. One potential modi�cation is to separate bot
comments (11) by relegating them to a space reserved for bot interactions. As stated by
P32 “developers do not like bots to come in the middle of their conversations. So, bots having

their own space or their own channel would be the best [option].” This dedicated space for
bots would present the bot messages that are “dead-ended” [P2]: that is, the ones that do
not require any response from the developer. Additionally, they suggest implementing
mechanisms to collapse the bot outputs: “then, you can collapse all messages. If you want

to read a message, you have to expand it” [P2].

The participants also proposed the implementation of a bot con�guration dashboard
(4), in which developers can customize their preferences for viewing bot interactions. This
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dashboard would help developers who work on several repositories to have a common
interface to monitor bots’ actions, as illustrated by P3 “when [the developer] end[s] up with

tons of repositories, and bots are working on it, [the developer] need some overview picture

of it.”

Summary of phase I. As a result of the design �ction methodology, we identi�ed a
series of design strategies regarding the meta-bot and its integration with the social
coding platform. More speci�cally, participants envision strategies for information
management, newcomers’ assistance, noti�cation management, spam/failure manage-
ments, and platform support.

5.2.3 Phase II: Suitability Study
To further re�ne the strategies elicited via the design �ction method, we developed

a prototype and collected participants’ perceptions of it. Understanding the perceptions
of the subject-matter experts—practitioners who face the problems in the daily life and
have large experience with software bots—supports evaluation of the suitability of the
proposed solutions.

Phase II: Method

Prototyping We developed a prototype to receive feedback about the most cited strate-
gies. We applied the prototype to a scenario created from the Reakit11 project. This project
uses four bots to support the pull request review process and all bots report their outputs
using comments on the pull request. Each of them is responsible for a di�erent task:

• CodesandBox – provides an isolated test environment for the validation of the
code modi�ed by the pull request.

• Compressed-size-action – reports data referring to the di�erence in size of �les
modi�ed in the pull request.

• Codecov bot – provides code coverage metrics, o�ering tools for comparing reports
between pull requests.

• Reakit bot – a project-speci�c bot implemented to report deploy information.

Implemented Prototype To o�er di�erent views for maintainers and newcomers,
we split the prototype into two di�erent versions: the experts’ pull request interface
(see Figure 5.6), designed to support maintainers and experienced contributors; and the
newcomers’ pull request interface (see Figure 5.7). In Figure 5.6, we show how we mapped
the strategies onto the experts’ designed interface. First, we used the strategy of separating

bot comments (PS1) to design a speci�c place for bots in the pull request. We created a new
tab in the pull request interface (see Figure 5.6-A) called “Bots Conversation”. This tab
contains all information and events regarding bots in the pull request, including a timeline

11 https://github.com/reakit/reakit

https://github.com/reakit/reakit
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of bot events. As for bot outputs, we also disambiguate the bot participants from human
participants, as shown in Figure 5.6-D.

Separating bot comments

Aggregating, summarizing, 
prioritizing, and 

categorizing bot comments

Keep the most recent 
information

A

B

C

D

Figure 5.6: Experts’ pull request interface

In relation to the meta-bot comments, we implemented the strategies of aggregating

(IM2), summarizing (IM1), prioritizing (IM4), and categorizing (IM6) bot comments as
we depicted in Figure5.6-C. First, the meta-bot aggregates all bots outputs in one place,
and also creates a summary with the most important information about each one. It
then groups them into categories, taking into consideration the priority. To keep the most

recent information (IM5), we include in the summary the latest comment from each bot
(Figure5.6-B). The Reakit bot, for example, posted three comments in the timeline of bot
events; however, only one entry appears in the summarized table for that bot. In addition,
in the timeline of bot events, it is possible to expand all bot comments.

We also mapped the aforementioned strategies into the newcomers’ pull request
interface. The di�erences between those two versions are related to the meta-bot message.
Figure 5.7 highlights the designed interface for newcomers. In addition to the table summa-
rizing the outputs, we added a text-based message to ful�ll the requirement of welcoming

newcomers (NA2), as shown in Figure 5.7-A. Beyond presenting a welcoming message,
design �ction participants emphasized the importance of explaining rules, instructions, and

requirements (NA1) for contributors who are new to a project. Thus, we included a link to
Reakit’s contributing guidelines (see Figure 5.7-B).

Another important distinction is the way the meta-bot displays the information for
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Provide information 
interactively 

C

Welcoming message
A

Explaining rules, 
instructions, and 

requirements

B

Figure 5.7: Newcomers’ pull request interface

newcomers versus experts. In Figure 5.7-C, we present the interactive process of displaying
bots’ information. Instead of presenting the complete summary, the meta-bot presents
the information one at a time (NA3) for newcomers. This approach aims at guiding the
newcomers through the requirements for the pull request; we also provided a brief expla-
nation of bot messages for each step. To proceed through the interactive output, the user
has to click on the provided links. There is also an option to see all the meta-bot outputs
at once.

Interviews We reached out to our 32 participants via email, inviting them to provide
feedback through an online meeting. This process is an opportunity for participants to
provide their feedback on particular aspects of our �ndings (Merriam, 1998), expressing
their preferences about the elements of the designed prototype (Jeffery et al., 2017). Fifteen
participants provided their feedback: P6, P7, P8, P9, P11, P13, P14, P16, P19, P20, P23, P27,
P28, P30, and P31. Each meeting lasted about 30 minutes. During the meeting, we walked
them through the prototype, describing how we mapped the envisioned strategies onto
the designed interface, and asked for their feedback.

After transcribing the interviews, the author coded the issues and suggested improve-
ments to the designed interface. The interview analysis process was similar to the participa-
tory design �ction data analysis. For each interviewee, we identi�ed and coded each excerpt
that described an issue or an improvement. All researchers met to discuss the results of
the coding for each interview to reach a negotiated agreement. All interviewees provided
rich feedback, although we reached information saturation after the fourth interview, i.e.
after we identi�ed no new suggested improvements to the design interface.

Technology Acceptance Model To assess the participants perception about the de-
signed interface, we also applied the Technology Acceptance Model (TAM) (Davis, 1989)
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by conducting a questionnaire immediately after concluding each interview. TAM is a
model to assess the user’s perception about a technology’s usefulness and ease of use, thus
determining a user’s technology acceptance behavior. This instrument is frequently used
in software engineering literature (e.g., (I. Steinmacher, T. U. Conte, et al., 2016; Chen
et al., 2012)).

Perceived usefulness - (PU)

U1. Using the designed interface would enable me to accomplish tasks more quickly.
U2. Using the designed interface would improve my performance.
U3. Using the designed interface would increase my productivity.
U4. Using the designed interface would increase my e�ectiveness.
U5. Using the designed interface would make it easier to do my job.
U6. I would �nd the designed interface useful.

Perceived ease of use - (PEOU)

E1. Learning to operate the designed interface would be easy for me.
E2. I would �nd it easy to get the designed interface to do what I want it to do,
to mediate the actions of other bots and present it on the pull request.
E3. My interaction with the designed interface would be clear and understandable.
E4. It would be easy for me to become skillful at using the designed interface.
E5. It is easy to remember how to perform tasks using the designed interface.
E6. I would �nd the designed interface easy to use.

Self-prediction of Future Use (SPFU)

S1. Assuming the designed interface would be available,
I predict that I will use it in the future.
S2. I would prefer using the designed interface to the existing interface.

Table 5.4: Scale items for measuring usefulness, ease of use and self-predicted future use

The questions are organized to measure each of the three main constructs of TAM:
perceived usefulness (Ui); ease of use (Ei), and self-predicted future use (Si). Table 5.4 shows
our assessment model which was adapted from previous literature (Babar et al., 2007;
Davis, 1989). We used a 5-point Likert scale to measure participants’ agreement with each
statement, ranging from “Strongly disagree” to “Strongly agree” and including a neutral
value.

Phase II: Results

In the following subsections, we describe the results from Phase II.

Developers’ perceptions of the design strategies The participants who gave feed-
back were, overall, positive about the prototype. For instance, P11, an experienced open-
source maintainer, reported: “I’m very resistant to bots; however, I liked it a lot for a couple

of reasons.” He explained that he appreciated the creation of a speci�c place for bots in the
pull request, and the “compressed information” [P11] displayed by the meta-bot, since he
does not “need to open a CI page to know what happened” [P11]. According to P30, when
bot comments appear in between human comments, it is easy to miss a piece of interesting
information. She stated that our approach would help to avoid that. P16 also described
our modi�cations to the pull request interface in a positive light: “I liked it that you have

removed the restraints of what the interface looks like today and just changed them to what

would be better.”
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Suggested Improvements #
Include timeline references for bots 10
Quoting bot comments on the main conversation 5
Enhance newcomers bot message 4
Move summary to the main conversation 4
Interactive comments as opt-out feature 3
Replace bots tab name 2
Filtering bot interactions 1

Table 5.5: Suggested improvements to the prototype (# = Number of participants we assigned to each

category).

In addition to the positive comments, we found that some design elements needed
improvements, as shown in Table 5.5. During the analysis we could identify seven potential
points of improvement reported by the participants. Next, we further explain the reasoning
behind those suggestions.

Include timeline references for bots. According to the participants, one problem with
having a separate tab for bot comments is the loss of context. Since we moved all information
related to bots to the new tab, developers might lose track of which event triggered the bot
action. As stated by P9, the timeline references might be implemented by including a short
line in the timeline of the main conversation with a link to the respective bot comment:
“a noti�cation like ‘a bot comment has occurred here’ so the user can click to switch tabs.” To
avoid noise, P9 also mentioned the creation of grouped bot references in the timeline to
deal with cases of pull requests with more than one bot comment in a sequence: “GitHub

interface could simply merge them into one: ’there were lots of bot comments here,’ since one

of the goals is also to remove the noise.”

Quoting bot comments on the main conversation. Also related to the loss of context

due to the creation of the bot tab, four interviewees suggested the possibility of quoting bot

comments on human conversation. Participants mentioned that in some cases a bot com-
ment might trigger a discussion in the human conversation tab. Therefore, it is important
to refer to the bot comment, and enable the possibility of including a bot quotation within
the human comment.

Enhance newcomers bot message. Participants also suggested a few adjustments in
the message the meta-bot shows to newcomers. As cited by P9 and P27, the interactivity
we implemented in the comments using a link is not explicit. P9 suggested that replacing
the link with a button would be a better option. For P27, an even better option would be
showing all steps hidden by default and providing an easy way to expand and collapse
them to remove the need to click on links or buttons. In addition, they suggested including
more visual clues in the table and in the text to call the user’s attention to important points.
For example, it is possible to “reuse the icons of the bots a little bit and kind of show visually

from which bot is the warning coming from” [P16].
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Interactive comments as opt-out feature. According to the interviewees, choosing
between the interactive or static versions of the meta-bot message might depend on
personal preferences. Therefore, they recommended including an interactive version of

meta-bot summary as an opt-out feature, as highlighted by P30: “even if the person is

new to the repository, maybe [she] is a contributor who is very used to contributing to other

repositories. So then it’s good that you can opt-out.”

Move summary to the main conversation. Another problem that might occur when
separating bot comments is that contributors, especially newcomers, might be unaware of
the presence of bots on a pull request. To overcome this problem, interviewees proposed
moving the summary provided by the meta-bot to the main conversation. P27 suggested
that the meta-bot should appear in the human conversation “like a side panel. Then, the

summary can always be visible. And all the detailed information could be in the bot conver-

sation.”

Replace bots tab name. Although less recurrent, two participants recommended replac-

ing the name of the bots’ tab. As explained by P11, the term “bots conversation” implies a
dialog between bots, which is not the case of these bots. For P27, the designed bots’ tab
“is more like history.” They suggested terms such as “bots history”, “bots reports”, or any
other name that includes ”automated.”

Filtering bot interactions. Still related to the bots tab, P16 suggested o�ering an option
to �lter out the interactions in the bots’ timeline. First, they would like to have access to
interface elements that allow them to selectively show interactions of a single bot, for exam-
ple. It might be helpful if a bot posted multiple comments in the bots’ timeline, reducing the
workload of searching for them. P16 mentioned that “if there are multiple comments from

Reakit bot, for example, then I would like to see a thread only with chronological comments.

Then, I can follow only this bot, and I don’t need to go through it manually.”

Perceived usefulness, ease of use, and potential future use In the following, we
present the results for the TAM questionnaire in terms of the designed interface’s perceived
usefulness, ease of use, and prediction of future use. As a measure of consistency, we
checked the questionnaire items’ reliability. A precise, reliable, and valid instrument
ensures collection of accurate information. Therefore, we conducted the reliability analysis
to ensure the internal validity and consistency of the items used for each factor, using
Cronbach’s Alpha (Bland and Altman, 1997). Carmines and Zeller (1979) suggest that
a Cronbach’s Alpha reliability level that exceeds a minimum of 0.70 indicates a reliable
measure. According to the results, the Alpha values exceeded the threshold, with 0.84 and
0.72 for usefulness and ease of use items, respectively.

Most participants found the designed interface useful. We present each item’s detailed
results in Figure 5.8. None of the participants disagreed with any item related to the
usefulness of the designed interface—all items had more than 50% of agreement or strong
agreement. In particular, quickness (U1), easier job (U5), and usefulness (U6) had more
than 85% of agreement or strong agreement.
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Figure 5.8: Responses to the 5-point Likert-scale items for Perceived Usefulness

In Figure 5.9, we can observe the answers’ distribution per item related to the ease
of use. More than 67% of the participants agreed or strongly agreed with the items. In
addition, all participants agreed that the designed interface is easy to use (E6). Only one
participant disagreed with the designed interface’s ease for performing his desired tasks
(E2). In section 5.2.3, we highlighted the suggestions to improve the design interface, which
are likely to a�ect the ease of use positively.
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Figure 5.9: Responses to the 5-point Likert-scale items for Perceived Ease of Use

Figure 5.10 reports self-predicted future use of the designed interface. We observe
that 14 (93%) participants agreed or strongly agreed that if the designed interface were
available in the future, they would use it (S1). Compared to the current approach employed
by GitHub, a large number of participants (13) agreed with a preference for the designed
interface. Only one participant disagreed, i.e., he preferred the traditional interface.

Summary of phase II. We found seven potential improvements for our designed
interface. Participants perceived the designed interface as a useful and easy to use
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Figure 5.10: Responses to the 5-point Likert-scale items for Self-predicted Future Use

interface, and would potentially use it in the future, indicating the suitability of the
design strategies.

5.3 Discussion
Identifying design strategies to reduce the noise created by bots on pull requests

is relevant since developers often complain about the information overload caused by
repetitive bot behavior on pull requests (Wessel, I. Wiese, et al., 2021; Erlenhov, Neto,
et al., 2016; Brown and Parnin, 2019; Mirhosseini and Parnin, 2017; Peng and Ma, 2019).
Employing Design Fiction as a method to prototype a technology (Knutz and Markussen,
2014), we gained insights to re�ne the design of a meta-bot and the underlining platform,
taking into account the perceptions of practitioners experienced with bots on social coding
platforms.

According to our participants, the meta-bot should act as a gatekeeper: a layer between
other bots and the users. As a gatekeeper, the meta-bot helps to mitigate information
overload by curating and presenting in a structured way the other bots’ outputs. By
reducing the cognitive e�ort to process incoming information (Miller, 1956), concise and
well-organized information might help developers to leverage bots outputs.

In line with Erlenhov, Neto, et al. (2016)’s results, our study indicates that a combina-
tion of three di�erent characteristics appears to be relevant for the meta-bot: intelligence,
adaptability, and autonomy. However, intelligence and adaptability are not yet widely
present on bots that work on GitHub (Wessel, Souza, et al., 2018). Our participants
mentioned several strategies for the meta-bot that rely on learning from past experiences
and adapting its behavior. One example is the ability to notify developers only on their idle
times. To do so, the meta-bot must be smart enough to learn developers’ preferences and
adapt accordingly. Making smarter decisions (e.g., notifying developers on their idle times)
would require bots to be enriched with learning models for the target context. This topic
was also explored in other domains. For example, some bots in the education �eld learn
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from previous interactions and estimate students’ interest level (Nakamura et al., 2012) or
learning styles (Latham et al., 2010), adapting their interactions to improve collaboration.
Similar models could be used in open-source development.

In the following, we discuss how our results lead to practical implications for practi-
tioners and insights and suggestions for researchers.

Implications for Bot Developers: Our study results provide insights for bot developers
who want to mitigate noise, laying a foundation for designing better bots. For example, our
�ndings indicate the OSS developers would like to customize aspects of the bot interaction
(e.g., noti�cations frequency and timing). Therefore, it is important for bot developers to
design a highly customized bot, providing project maintainers control over bot actions. In
addition, our research can also help bot designers by providing guidelines and insights
to support the design of bot messages. Instead of providing the information aggregated,
bot developers should consider other possibilities, such as customizing the message or
providing the information interactively. Applying one of those strategies might help
developers deal with and interpret the information from bots.

Implications for Researchers: Our results can serve as a reference to guide further
research. For example, we found several strategies to present the bot information to devel-
opers (e.g., summarization, categorization, prioritizing, interactively). Additional e�ort
is still necessary to investigate how these strategies might in�uence the way developers
interpret the bot comments’ content. How developers think, perceive, and remember
information (i.e. their cognitive style) is likely to a�ect how they handle bot messages
and learn from them (Vorvoreanu et al., 2019). Future research can further investigate
these di�erences and inform a set of guidelines on how to design e�ective messages for
di�erent developer pro�les. Further, our work can inspire researchers to use design �ction,
a method still rarely used in software engineering studies but that has been shown to be
e�ective in other domains.

Implications for Social Coding Platforms: The preliminary implementation of the
meta-bot revealed some limitations imposed by the GitHub platform that restrict the design
of bots. Wessel, I. Wiese, et al. (2021) already mentioned some examples of those technical
challenges in their hierarchical categorization of bot problems. In short, the platform
restrictions might limit both the extent of bot actions and the way bots are allowed to
communicate. It is essential to provide a more �exible way for bots to interact on the
platform. In addition, to reduce information overload, participants suggested removing
bot interactions from the main conversation interface and creating a dedicated place for
them. We prototyped this strategy of separating bot events by designing a new tab in
the pull request interface; this idea can be leveraged to reshape the interface and better
accommodate bot interactions.

5.4 Limitations and Threats to Validity
In this section, we discuss the potential threats to the validity of our �ndings and how

we addressed or mitigated them.
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Generalizability of the results Since we recruited practitioners experienced with bots
on the GitHub platform, our �ndings may not necessarily apply to other social coding
platforms, such as GitLab and Bitbucket. Although we do not anticipate big di�erences in
these platforms, additional research is necessary to investigate the transferability of the
results.

Data representativeness Although we conducted the participatory design �ction with
a substantial number of practitioners, we likely did not discover all possible strategies
or provide full explanations of the strategies. We are aware that each bot as well as each
project has its singularities and that the open-source universe is expansive. Our strategies
to keep collecting data until reaching information saturation and to consider di�erent
practitioner pro�les and identify recurrent mentions of design strategies from multiple
perspectives aimed to alleviate this issue. Anyway, our �ndings re�ect the perspective of
practitioners experienced with bots. Therefore, we acknowledge that additional research
is necessary to consider the perspective of those who do not have any experience with
bots on social coding platforms.

Information saturation We continued recruiting participants and conducting inter-
views until we came to an agreement that no new signi�cant information was found. As
posed by Strauss and Corbin (A. Strauss and Juliet M Corbin, 1997), sampling may be
discontinued once the collected data is considered su�ciently dense and data collection
no longer generates new information. As previously mentioned, we also made sure to
interview di�erent groups with di�erent perspectives on bots before deciding whether
saturation had been reached. In particular, we interviewed researchers, bot developers,
and developers who are contributors and/or maintainers of open-source projects.

Reliability of results To improve the reliability of our �ndings, we employed a constant
comparison method (Glaser and Anselm L Strauss, 2017). In this method, each interpre-
tation is constantly compared with existing �ndings as it emerges from the qualitative
analysis. In addition, we also developed a prototype and collected feedback from the
participants. To check the reliability of the TAM instrument, we performed a reliability
check on the questionnaire items. Additionally, to direct data collected, we carefully
designed a 3-minute animated video and guided participants through four scenarios as a
starting point for thinking about the future, constantly reminding them that they were
not constrained by current technological limitations.

5.5 Final Considerations

In this Chapter, we took the �rst steps toward overcoming information overload
created by bots. To do so, we implemented the meta-bot and conducted a preliminary
study to validate its concept. A preliminary evaluation of the meta-bot concept showed
that aggregating bot comments was helpful to facilitate developers’ to �nd the appropriate
information. We then decided go one step further, involving the users during the design
process, to evolve the preliminary concept.
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By capturing the expectations of maintainers, contributors, bot developers, and ex-
perienced researchers, we elicited design strategies for the creation of a meta-bot. We
presented participants with a �ctional story of a meta-bot capable of better supporting
developers’ interactions on pull requests and operating as a mediator between developers
and the existing bots. Participants answered questions to complete the end of the �ctional
story, raising concerns around the use of bots and discussing the design strategies to
mitigate noise.

Grounded in participatory design �ction, we used the emerged design strategies to
implement a prototype of the meta-bot. Participants perceived the prototype as a useful
and ease-to-use tool to overcome noise, and indicated a potential future use of the designed
interface. Compared to the previous literature, these �ndings provide a comprehensive
understanding and exploration of design ideas to enhance the integration between bots,
humans, and social coding platforms.
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Conclusion

The literature on bots on social coding platforms report several potential bene�ts,
such as reducing maintainers’ e�ort on repetitive tasks (Wessel, Serebrenik, I. Wiese, I.
Steinmacher, and Marco Aurelio Gerosa, 2020) and increasing productivity (Erlenhov,
Neto, et al., 2016). In this dissertation, we extend previous work by delving into the
challenges incurred by bots on social coding platforms. We identi�ed, organized, and
discussed the key e�ects and challenges of using and interacting with software bots on
OSS projects’ pull requests. We focused on the most recurrent challenge, namely noise,
and proposed strategies to overcome this challenge. In this chapter, we summarize the
conclusions of this work by bringing all of the results presented in previous chapters.
Then, we discuss the implications for the design of future bots and the limitations of this
research, leading to a set of directions for future work.

First, in Phase I of this dissertation, our goal was to understand the e�ects of adopting
bots to OSS projects pull requests. We then investigated how several activity indicators
change after the adoption of a bot. To do so, we focused on code review bots, which is
one of the most common types of bots according with our warm up studies (Wessel,
Souza, et al., 2018). We employed a regression discontinuity design on 1,194 software
projects from GitHub. Afterward, to further shed light on our results, we interviewed
12 practitioners, including open source maintainers and contributors. We found that,
after code review bot adoption, more pull requests are merged into the codebase, and
communication decreases between contributors and maintainers. Considering non-merged
pull requests, after bot adoption projects have fewer monthly non-merged pull requests,
and faster pull request rejections. From the practitioners’ perspective, the bot comments
make it easier to understand the state and quality of the contributions and increase
maintainers’ con�dence in merging pull requests. According to them, contributors are
likely to make changes in the code without interacting with other maintainers, which also
helps to change the focus of developers’ discussions.

In Phase II, we extend previous work by delving into the challenges incurred by bots
on social coding platforms. To do so, we investigate the challenges bots bring to the pull
request work�ow from the perspective of practitioners. We relied on data collected from
semi-structured interviews with 21 practitioners who have experience interacting with bots
on pull requests. We validated our �ndings through member-checking. While participants
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commend bots for streamlining the pull request process, they complain about several
challenges they introduce. In particular, our �ndings indicate noise as a recurrent and
central problem. Frequently annoying bot behaviors such as verbosity, too many actions,
and unrequested or undesirable tasks on pull requests, are perceived as noise.

In Phase III, we aimed at design strategies to mitigate the information overload created
by annoying bot behaviors. Based on the hypothesis that a meta-bot can mitigate the

information overload created by other bots around pull requests, we conducted an empirical
study to assess a preliminary version of the meta-bot, which aggregate the outcomes of
other bots on a pull request. Our �ndings indicate the meta-bot as a promising approach to
mediate the existing bots. To further investigate the ideal features of the meta-bot, we used
the Participatory Design Fiction approach to involve bot experts in the design process.
Then, we identi�ed several strategies that we used as insights to the implementation of
a prototype. In the designed interface, we created a speci�c place in the pull request to
display the bots’ interactions. The meta-bot was evolved to provide a summarization of bot
outputs, also prioritizing the most import ones. The results of a suitability study revealed
seven desired improvements to the interface, such as creating bot references in the main
conversation timeline to keep track of bot events that occurred during the pull request
lifetime.

We also analyzed the perceived usefulness, ease of use, and predicted future use of
the designed interface. These results are very encouraging, showing that participants
perceived the prototype as a useful and ease-to-use tool to overcome noise. Participants
also indicated a potential future use of the designed interface. We found very positive
results with more than 53% agreement in all evaluated items. The item “I would �nd the

designed interface ease to use” was positively evaluated by all participants.

6.1 Delivered Contributions
The artifacts generated in Phase I, II, and II of this dissertation represent the main

contributions. In Phase I, we empirically identi�ed the changes in project activity indicators
after the adoption of a code review bot. We also elucidated the open-source developers’
perspective on the impacts of code reviews bots. These contributions aim to help practi-
tioners and maintainers understand, or even predict, bots’ e�ects on a project, especially
to avoid the ones that they consider undesirable. Additionally, our �ndings may guide
developers to consider the implications of new bots as they design them.

During Phase II, we empirically identi�ed the the challenges introduced by the in-
teraction of bots on GitHub pull requests. We created a hierarchical categorization that
summarizes these challenges. We present a set of 17 general challenges that have not been
reported in the literature. By gathering a comprehensive set of challenges incurred by
bots, our �ndings complement the previous literature, which presents scarce and di�use
challenges, reported as secondary results. Since noise emerged as a central theme in our
analysis, we further theorize about it, grounded in the data we collected. Thus, the main
contribution of Phase II is a theory of how human developers perceive annoying bot
behaviors as noise on social coding platforms. This theory opens the door for researchers
and practitioners to further understand the challenges introduced by adopted bots to save
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developers time and e�orts on social coding platforms. More speci�cally, we provide the
�rst step towards understanding how the information overload bots’ cause might a�ect
how humans communicate, work, and collaborate on social coding platforms.

In Phase III, we built a prototype of the designed interface, which comprises the
meta-bot and several modi�cations to the GitHub’s pull request user interface to �t the
envisioned features. The meta-bot and the modi�cations to the user interface were based
on the participatory design �ction study conducted with practitioners. We then conducted
a suitability study of the designed interface with a subset of our interviewees and the
results are very encouraging. Researchers and tool designers may also leverage our results
to enhance bots’ communication design, thereby better supporting human-bot interaction
on social coding platforms.

We also claim that this dissertation contains some minor or secondary contributions,
as follows:

Characterization of the usage of bots in OSS projects presented in the introduction
and used to de�ned the scope of the dissertation is novel. In order to delimit the scope of
this dissertation, we conducted an exploratory study to classify the bots supporting a set
of 351 open-source projects. From our data analysis, we make the following contributions:
(i) bring attention to bots, a relevant resource that o�ers support for collaborative tasks
in open-source development; (ii) characterize the usage of bots in open-source projects;
and (iii) elucidate how contributors and maintainers see the importance and support of
bots.

The method used to design the Meta-bot and its environment The participatory
design �ction (PDFi) approach is new to software engineering studies and can be reused
in other works to support the design process of new technologies. We did not evaluate or
discuss the method at length in this dissertation, but as it is a well established method in
the human-computer interaction (HCI) �eld, we consider it a secondary contribution to
the literature of software engineering.

6.2 Future work
The work presented here is the initial step toward designing approaches to overcome

the information overload incurred by bots’ interactions. In the following, we point to some
important open challenges that can be addressed in future work:

Another look at the bot interaction challenges. Both noise theory and the reported
general challenges are grounded in the qualitative analysis of data from practitioners who
are experienced with bots on the GitHub platform. Hence, the bot interaction challenges
can be further investigated and evaluated from the perspective of other social coding
platforms, such as GitLab and Bitbucket.

Mining software repositories to con�rm the information overload. Some of the
identi�ed annoying bot behaviors might be further analyzed using software mining tech-
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niques. A possible future direction could be to use these techniques to verify which
annoying bot behavior a given project presents. This kind of study can be used as one of
the indicators of information overload in a project.

Migration to other automation tools. Recently, GitHub introduced GitHub Actions,
a feature providing automated work�ows. These actions allow the automation of tasks
based on various triggers and can be easily shared from one repository to another. In the
GitHub Actions study we performed, we noticed that a considerable amount of projects
have been switching from bots and other automation tools to Actions. Researchers could
analyze how this migration a�ect and in�uence the perceived information overload, since
the way these Actions communicate in the GitHub platform is the same as bots.

Di�erent perceptions of noise. In the noise theory, we discovered that although
annoying bot behaviors are the source of noise, the perception of such noise varies. For
instance, noise perception depends on the experience and preferences of the developer
interacting with the bot. Thus, a clear future direction is to explore in more depth how
di�erent developers, or even communities, perceive noise generated by bots and copy with
its e�ects.

User Experience Assessment of the designed interface. As another future work,
we plan to apply more robust user experience assessment methods to evaluate how open-
source developers perceive and use the designed interface. We aim at evaluate whether
the designed strategies in fact mitigate noise. Also, we wanted to receive feedback from
developers belonging to various roles in the open-source development process: project
maintainers; experienced contributors; and newcomers.

In conclusion, we expect that the results presented in this dissertation open new
research avenues that bring together researchers in software engineering (ES), computer
supported cooperative work (CSCW), and human-computer interaction (HCI) �eld to
design bots that provide an enriched user experience, thereby mitigating the occurrence
of information overload on the human communication channels.
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Supplementary Material for
Chapter 3

In this appendix, we present the complementary material to replicate the method
available in the paper “Quality Gatekeepers: Investigating the E�ects of Code Review Bots

on Pull Request Activities.” For more details, refer to our Zenodo repository.1

A.1 Interview Guide
Demographic questions

• What gender do you identify as?

• Which continent are you currently living in?

• Do you maintain an open source project that uses code review bots?

• How many years of experience do you have as a maintainer of this project?

Explaining the statistical results We conducted a scienti�c investigation by mining
data from open source repositories. Interestingly, we found that after adopting a code
review bot there are more merged pull requests, less communication between developers,
fewer rejected pull requests, and faster rejections. We are intrigued about these e�ects
and would like to hear thoughts from developers who actually use these bots.

Follow-up Questions

• Could you conjecture the reasons why this happens?

• Have you observed these e�ects in your own project?

• What other e�ects did you observe in your project and attribute to the introduction
of the code review bot?

1 https://zenodo.org/record/4618499

https://zenodo.org/record/4618499
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Appendix B

Supplementary Material for
Chapter 4

In this appendix, we present the complementary material to replicate the method
available in the paper “Don’t Disturb Me: Challenges of Interacting with Software Bots on

Open Source Software Projects.” For more details, refer to our Zenodo repository.1

B.1 Interview Guide
Starting the interview

• Remembering the terms of the consent form.

• Explaining research objectives.

• Asking permission for recording.

Questions about the participant’s experience

• How experienced are you with software development?

• How experienced are you with open-source software development?

• What is your experience with GitHub bots (as maintainer, contributor, or bot devel-
oper)?

• For how long have you been interacting with software bots on GitHub?

• (OR - for bot developers) For how long did you maintain this bot?

• Do you have experience using bots in projects outside GitHub? (Yes/No)

– Which type of bot?

– How many years of experience do you have?

1 https://zenodo.org/record/4443841

https://zenodo.org/record/4443841
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Questions about software bots on pull requests

• (For bot developers) How would you describe the trajectory of the design of these
bots?

– Which type of challenges have you experienced?

• Do you have experience in projects that use bots to support pull requests? (Yes/No)

– How many projects? Which projects?

– How many bots? Which bots?

• Have these bots been developed speci�cally for those projects? (Yes/No)

– (For bot developers) Why did you build this bot?

– (If Yes) Are they available for other projects/communities?

• How would you describe the role of these bots (the tasks they have to ful�ll, purpose)?

• How do these bots interact on pull requests (commenting, labeling, assigning re-
viewers, opening/merging PRs)?

• Is it common to have more than one bot interacting in a pull request? (Yes/No)

– (If yes) Can you tell me an example of multiple bots interacting?

• What kind of support do you expect from a bot adopted to work on pull requests?

– Does it depend on the role of the bot?

• Do you think that the bot comments on pull requests are meaningful in providing
feedback? (Yes/No)

– (In both cases) Why?

Questions about human-bot interaction problems

• What is your perception about the ecosystem of bots working on GitHub platform?

• In your opinion, what are the main problems that the use of bots on pull requests
introduces?

• What is the frequency of these problems?

• What is the relevance of these problems?

• Who do these problems mainly impact (contributors, maintainers, newcomers, ...)?

• Are these problems caused by a speci�c type of bot? (Yes/No)

– (If Yes) Which one?

– (In both cases) Why?

• Do bots introduce any technical issues to the project (con�guration, . . . )?

• Do bots introduce any social or ethical issues to the project (communication, . . . )?
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• Have you ever heard developers complaining about bots (about the interaction of
these bots)?

• Do you remember any case of a bot bothering you? (Yes/No)

– (If Yes) How did you handle it?

– (If Yes) Did you or someone else solve this problem?

• Do you think these problems can lead projects to stop using a bot? (Yes/No)

– (In both cases) Why?

– (If Yes) Do you remember any?

Questions about solutions

• How would you change the bots to avoid such problems?

• How do you see the future of software bots for GitHub pull-requests?

B.2 Code Book – Noise Theory



Code Description Participants who 
mentioned Examples

Factors

Bot failure

Recovering from a 
failure

When recovering from a failure 
the bot might leave all missed 

comments.
P3

it comment on issues when it was released and when it was back it create a thousand of comments. 
So, that is annoying if that happens. That is a big problem. But it is obviously a bug. I mean, it is 
annoying but it is not intended. [P3]

Bug
When a bug occurs the bot might 

inflate the project with pull 
requests or comments

P6, P7, P19

So like, something went wrong with the release process. So it opened up a bunch of different pull 
requests. And like some of them were a mistake. So my other engineer that had to comment and be 
like, “Hey, sorry, like, these were a mistake.” [P6] 

The only times I've perceived our bots as noisy is when there's an obvious bug in the state 
transitions. [P7]  (from member checking)

Unforeseen problem with bot adoption
During the installation, the bot 
can apply the rules to all pull 

requests or all projects becoming 
noisy.

P3, P10, P21

Or maybe, when you install it for the first time and it will comment on every issue that is open and no 
longer… but, this is what you want, but it is also a lot of noise for everyone who is watching the 
repository and they might be upset about it and say “oh, this bot is stupid I will no watch this 
repository anymore.” [P3]

Bot development

Testing in a real 
scenario

Developers often need to test 
bots on a real project, which 
might cause unexpected bot 

actions

P2, P12

It [the bot] was in development, but we put it in several repositories to test it. And it caused a very 
annoying problem. [...] And it broke the process a little bit, it was kind of boring. [P2]

We struggle with, like, environments, I guess I would call, which I think is a little bit related to this 
testing in a real scenario. It's very... especially if your bot is designed to interact with people and 
other actions in the repository. It's just actually quite hard to do that testing. [P12]  (from member 
checking)

Bot deployment
During bot deploument, the bot 

might perform unexpected 
actions 

P7
And then when we were trying to upgrade the bot, there were two versions running and they got an 
edit war sending me like 45 emails or something like that. Because they kept moving then ... so bot 
instance one was moving here and then bot instance two moved it back and advances to this. [P7]

Bot design
Spam When opt-out bot interact on a 

repository P4, P16

I didn't give [to the bot] explicit authorization to enter the repository, it generates a notification that 
you did not request, which is the pull request. [P16]

[...] people want to have agency, they want to have choice. [...] They want to know that they are 
being corrected because they asked to be corrected. So when I asked for you to do code coverage, 
and you tell me I'm failing my code coverage, I asked for that.[P4]

Intended behavior Some default bot behaviors can 
be perceived as noise P4, P7,  P19 But by default, it also leaves a comment. [P19]

Bot annoying 
behavior

Verbosity
Bots providing dense information 

and overusing graphical 
elements

P1, P13, P17, P19, P21

So the default is it puts a gigantic comment with a treemap on your pull request. People hate that. 
[P13]

And so it has a GitHub integration that posts these rules. really dense and information rich elements 
to your pull requests. And I've seen it be a lot more distracting than it is helpful. [P17]

These bots that are chatty. [P21]

Frequency and timing of 
actions

Repetitive actions
When a bot create a new pull 

request even if there are already 
an open pull request not 

addessed.

P3, P6, P9, P10, P14, P15, 
P19, P21

sometimes like maybe it's an automation that like runs too frequently or something and then it's like, 
“oh, it keeps opening up all the pull requests that I don't need or want me to close them.[P6]

Sometimes we get comments like "hey, bot comments much to my taste" [P9]

I guess if dependabot every week opening a bunch of pull requests was annoying before we 
automated it to then have a bot go close the pull requests. We solve that problem with another bot. 
[P15]

It's very repetitive and it's possibly information dense. [P19]

Time insensitive
Some bots actios are time 

insensitive, since they work all 
day long.

P3, P19

As long as, for example, the comment is immediately after I did a change, for example, when I 
merge the pull request and probot have the welcome bot and says “hey the pull request was 
merged”, and as long as it happens, if it is in a second or two and I’m seeing the page I do not get a 
new notification, because I already saw it and I’m still on the page. But if it happens on three 
minutes later, and I left the page and suddenly I get the new notification and I think “ah, this person 
has another question or something”, so I need to check it out and find out that this is a bot. [P3]

Performing unexpected actions Bots might perform unsolicited 
taks (e.g., spams) P4, P6, P13, P16

So like, something went wrong with the release process. So it opened up a bunch of different pull 
requests. And like some of them were a mistake. So my other engineer that had to comment and be 
like, “Hey, sorry, like, these were a mistake.” [P6] 

Bots overopulation Too many bots working on the 
same repository

P7, P8, P9, P12, P13, P15, 
P19, P21

if you have a project with a lot of bots on.There can be a lot of notifications and interactions from 
that bots. [P12]

... a bunch of like stupid agents commenting on the pull request ... [P13]

Obviously, we might get to the point where there's too many [bots]. And like that will be a problem. 
[P8]

Yeah, because there were 30 different bots. And like each one of them was asynchronously going 
in. So it was just like, giving us tons and tons of comments. [P19]

Human previous experience
Different perceptions based on 
the previous experience of the 

developer (e.g., newcomer, 
experienced maintainer)

P3, P7, P14, P19

But if you, you know… when it is your self maintained project, and you see these comments 
everywhere and you can not configure the codecov to turn it off, it might become just noise. [P3]

There's other stuff where it's really more for novices or something like [bot] tends to have pretty, 
pretty dense messages. [P19]

Bots are too noisy for me. [P3]

since I'm experiencing in bots, I think it's fine, but it can... Some can probably generate a lot of noise 
as well. [P14]

I do worry that newcomers perceive the bots as noisy, even with only 1-2 comments, because the 
comments are large. [P7]  (from member checking)

Project standards When the bot is not compliant to 
the project standards P8, P9, P14

So if the code is public, then the biggest fear of the public maintaining… maintainers of the bug 
report is like the bot is not compliant to their standards, right? every public repository has some 
standards, whether in terms of communication, whether in terms of how many messages the 
developer should see. And the bot likely will not comply with this policy. [P9]

Like, my project isn't that complicated. I know which files I changed. And so if I'm not using it, then 
there's no point in seeing it. [P8]

So, like dependabot and renovate that generate the updates, not all software projects follow the 
same version and convention sometimes it is easy to get it slightly wrong. It depends... you could 
set it just to update stable releases, but then you're a bit behind. So you sort of has to be... it's easy 
to be on like the bleeding edge with bots, I would say. [P14]

Information 
overload

Notification overload
Bots creating too many 

notifications (e.g., emails, GitHub 
notification)

P3, P12, P13, P16

So, suddenly I would be a 1000 of new notifications just because a bot and it would be very 
annoying to me because I would know a legitime new notification, something I need to see or a 
stupid comment from a bot. [P3]

Nobody wants to be notified like 16 times about the pull request, and they'll just unsubscribe. [P13]

[...] it creates basically new notifications about things that are not new to me to see [P3]

who's not very active on GitHub will get completely overwhelmed by the review process because of 
all the notifications and they just… [P12]

Replicate information for maintainers
Bots sometimes overload 

maintainers with information they 
already have (e.g., redundant 

information)

P3, P8, P10, P13, P17

I remember that codecov was integration and always left comments telling you “oh, the code 
coverage drop for 1%” or whatever. And it would become noise at times, like… I would prefer not to 
have the comments, for me as a maintainer I would… Because it replicates information that we 
already had. [P3]

sometimes it's just commenting something that's redundant. [P17]

some people don't care to get that extra information. [P8]

Disruption on the 
human 

communication

Miss important information from humans
Information overload can lead 
developers to miss important 

information from humans
P1, P10

Miss important comments from humans [P1]

Before the bots, I could see who was working on the project in an easier way. For large projects it 
can be confusing, because do I really have several problems or are they just observations of the 
bots? [P10]

Difficult to handle the information It is difficult to handle all the 
information generated by bots P8, P10

As a human, it's difficult to parse through all that data and get something meaningful out of it. [P8]

A bot creating a lot of information, following its own patterns [...] To review all this content also takes 
a while. [P10]

Interrupt the coversation flow
Since bots are using the same 

communication channel as 
developers, they interrupt the 

conversation flow 

P13, P19

Because it interrupts. It's like you're talking to the person who submitted the pull request and then a 
bot comes in and puts other information in the middle of your conversation. [P13]

if the bots make just tons of comments and interrupt the conversation on the pull requests, we don't 
like that. [P13]

I think the main problem was that I've ever experienced with bots has been spamming us and 
drowning out conversations. [P19]

Disruption on the 
development 

workflow

Burden to filter out notifications
Due to the amount of 

notifications, maintainers need to 
filter out human notifications from 

bot ones 

P3, P16, P19

I don't want a lot of bot generating noise. I have to filter what is noise and what are important things 
and what are emergency things. It's like spam from GitHub notifications. [P16]

I get an email like tries to grab my attention. Whereas the CI status hook, I will go back, you know, I 
like to differentiate between a real person is talking to me and here's status information that you 
need. [P19]
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Disruption on the 
development 

workflow

Time spent with non-development tasks
Increase the burden for 
developers. Also waste 

developers time.
P5, P16, P20

it [the bot] spends extremely unnecessary time, from a person who is the maintainer of an Open 
Source package, who often does this voluntarily ... With noise, you know? For me it is a disaster. 
[P16]

Before closing, it comments to ask if the problem is resolved. I then have to respond that it is not 
resolved. It's bothersome because there's no real progress being made, yet it still takes my time. 
[P20]

It's an annoyance because it wastes our time. Constantly. We have to close it … we have to see 
“Oh, this is a PR”, “Oh, this is a spam”... like I waste five minutes determining, determining that it is a 
spam. [P5]

Noise Participants mentioned bots 
introducing noise

P1, P3, P7, P8, P9, P12, P13, 
P14, P16, P19, P20, P21

Noise. [P1]

Some of them can introduce a lot of noise. [P3]

So at some point, they [the bots] might be just too noisy. [P9]

Perceived as [relationship] Some bot behaviors 
might be perceived as noise P1, P7, P12

Depends on the verbosity of the bot and what it does. [P1]

I do worry that newcomers perceive the bots as noisy, even with only 1-2 comments, because the 
comments are large. [P7]  (from member checking)

what some people might think of as noise is information to other people, right? Like, it depends on 
the user's role and context within the project. [P12]  (from member checking)

Countermeasures

Stop watching a repository Contributors stop watching a 
repository to manage the noise P8,P13, P19

And I certainly would stop watching. Like, I feel like I would stop watching repositories that got five 
or 10 dependency upgrades, pull requests every single day, or, you know, unless I had some, I 
would have to use some sort of aggressive filtering. It might destroy my, like ability to use GitHub 
notifications, things like that. [P19]

Re-configuring the bot Maintainers need to re-configure 
the bot to avoid noise P8, P17, P19, P20

A significant nonzero number of them actually turn them [bot comments] off. And they turn them off 
because for them, it is not the right workflow for them. And so they prefer to, for us to only update 
status checks. [P8]

So typically I'll just turn off those comments entirely. [P17]

Re-configuring the bot to lower the frequency of actions. [P20] (from member checking)

Sometimes we need  to re-configure the bot. [P19]  (from member checking)

Re-designing the bot Bot developers need to re-desing 
the bot to avoid noise P12 So we did effectively redesign the messaging. [P12] (from member checking)
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Code Description Participants who 
mentioned Examples

B
ot

 d
ev

el
op

m
en

t i
ss

ue
s Platform limitations

Restricted bot actions There are limitations on the API 
that limit the bot actions P5, P10

"There are limitations to the API. Most of the things I want to do is possible to 
be done. But there are still a few things that just cannot be done with the API. 
So that's a problem that I face" [P5]

 if they make a PR I can directly adjust that PR myself like the code… That 
ability is not available through the API. I cannot build the bot. How do I say 
this? I cannot emulate that using API calls, it's GitHub limited the bot so that 
the bot cannot push a commit to the PR. [P5]

Restricted bot communication There are limitations on the API 
that limit the bot communication P3, P4

ideally I think that the platforms would offer more integration points for these 
bots, because basically to communicate bots have use comments. [P3]

Part of the problem is that the bot have to interact with the tools it has. So, it 
has comments and it has pull requests. And that is really the only sort of 
interaction it can do. [P4]

Technical overhead to host and 
deploy bots -

Maintainers face technical 
overhead to host and deploy their 

own bot
P7, P13, P14, P19

there's been technical overhead to maintain the bot. For a while the bots was 
running on a phisical machine. [P7]

I supposed maintaining them could be a problem. Like, I mean, when 
someone has to spend time maintaining the bot itself, at some point there is 
going to be a question. There is some trade off, right? The bot saves you time 
but it also costs time to maintain. [P19] 

Challenges in building complex 
bots -

Maintainers face challenges to 
build bots that are complex (e.g., 

using natural language)
P4, P11, P12, P18

I think a lot the ways people are building bots, they just automating a single 
thing. We don't have that. We just have one bot that does everything. I think it 
is hard to build a bot that has lot of capabilities. [P12]

As a developer, I tried to build some bots  using natural language processing. 
It is challenging. [P18]

B
ot

 a
do

pt
io

n 
is

su
es

Discoverability issues

Difficult to find an appropriate 
bot

Project maintainers face some 
challenges to find an appropriate 

bot for their projects
P4, P6, P9

It's a bit harder to find the right application. And also the discovery of the 
application is how to say not so transparent because I don't know how users 
find our applications. [P9]

From one it is discovery, right? There are actually really good ideias people 
could do with a bot and GitHub. But, as a developer, I don't know and I do not 
have time to search for it. [P4]

there is a lack of awareness that you like can use bots and that like bots are 
available to you... to like help you. So, I think like a lot of people are like… are 
doing things they like don't need to be doing because like, they could have a 
bot do that for them, but they don't realize that's an option. I think that's one 
thing. [P6]

Limited search mechanism for 
bots

There are limited mechanisms of 
search for bots on GitHub P4, P6, P10

Primarily I do and part of the reason is, there really isn't a good discovery 
mechanism for other bots. [P4]

I don't think it's very clear at all, like you can even use a bot or like how to use 
a bot or like where to find bots. In the marketplace, I don't know actually how 
much people use that. I don't even know if there is a category for bots. [P6]

Managing bots' configuration

Difficult to get a tailored 
configuration

Project maintainers face some 
difficults to ajust the configurations 

for bots
P1, P8, P10, P16

We do see users who, you know, struggle to get the right configuration for 
them. [P8]

It is easy to install the bot with the basic configuration. However, it is not easy 
adjust the configuration to your needs. [P10]

Managing the configuration for bots [P1]

Limited configuration
There are some limitations in the 
configurations for bots (e.g., how 

to configure more then one 
project)

P9, P10, P14

it could be hard to add to all the projects if you have a large number of 
projects, for example. [P14]

So some of them just allow you to add the whole organization. Others enable 
you to like a few projects at a time for example. I think it also for example, I 
mean bot could analyze your git code organization and add new projects. 
Some doesn't. [P14]

Burden to set up configuration 
files

Project maintainers need to learn 
how to configure the bot using a 

configuration file
P4, P15

It is like a whole configuration file you have to write. That is a lot of work, 
right? [...] Anytime I have to learn a new configuration file, I don't like it. It 
sucks. [P4]

Now, instead of having user interface that I can go click on I have to read a 
bunch of docs and figure out how to make a config. [P15]

Convincing developers to use the 
bot -

Project maintainers/Bot 
developers face challenges 

convincing developers to use the 
bot

P4, P10, P14

We have some really good tools we could leverage for developers, but they're 
not gonna want to just use these tools randomly. And how do you convince 
them to use it? I don't know. I think that's the biggest problem for bots in 
general. [P4]

I've induced them in a large scale at a place I worked, but I think like it… 
Initially you have to have on sort of opt in strategy to get people to adopt it. 
And if people like it, I think it will spread to the company. [14]

Technical complexity issues

Bot increase the barrier for new 
maintainers

Bot might increase  the complexity 
for new project maintainers P3

I think they can introduce complexity to the project and increase the barrier to 
onboarding new maintainers. If these bots need to be configured and you 
need to understand how they work [P3]

More work to monitor bots
The technical complexity incurred 

by bot adoption leads to more 
work to monitor those bots

P10, P12, P15

And I think for the maintainers, it gives them a little bit more work in some 
cases, because they have to monitor the setup and make sure everything is 
going well [P15]

Oh, I think they make your they make everything a little bit more complex, 
right? [...] So I guess it's adding more technical complexity to the project.  But 
what that means is that we can do many more reviews, so usually it works 
fine, but when it doesn't, it's the perfect more technical.  [P12]

Handling bot failures
Project maintainers need to 

handle bot failure, due to some 
bot instabilities

P3, P9, P10, P17, P14

If you rely on these bots and they stop working for some reason then it is a 
problem. If I automated by releases with semantic-release, and then are some 
kind of bug in semantic release and I don't know why it basically blocks me to 
create new releases. Because I automated everything, it is kind hard to 
manually create the releases.[P3]
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Bots introducing noise - Participants mentioned bots 
introducing noise

P1, P3, P7, P8, P9, P12, P13, 
P14, P16, P19, P20, P21

Noise. [P1]

Some of them can introduce a lot of noise. [P3]

So at some point, they [the bots] might be just too noisy. [P9]

Ethical issues

Bots with biased behavior Bot actions and messages might 
be biased P3, P9

It is a problem with bots in general. But I could see with you have a bot that 
works as GreenKeeper in a project and it has some kind of bias built into it, it 
would be a huge problem. [P3]

Yeah, like you there's no criteria to verify the use of you so that the bot is 
maintained, and is representing the opinion of a specific entity. [P9]

Bots with malicious intent Bots with malicious intent might 
manipulate developers actions P9, P18

is probably is this good bot or a bad bot because it's about both it could steal 
our private code, right? [...]  It is a bot that actually has malicious intent. [P9]

The other option there is, again, related to trust, right, because nobody 
enforces the bot to disclose. If they are lying for whatever reason, think about 
it as you can use the bots to manipulate the opinions of developers, right? 
Like the news, right? They can actually say something that they know is not 
true, they do it because they will only be very simple as you actually provide a 
suggestion saying, “Hey, guys, we have a security vulnerability.” You know, 
it's not there, but you're just trying this, you can actually ask a young 
developer to make something which might introduce a security vulnerability. 
[P9]

Bots impersonating developers Bots migh pretend to be humans 
developers P3, P6, P12, P15

The only thing I mentioned is that bots that pretend to be humans can often be 
met with confusion. So identifying a bot, as a bot, in as many clear ways as 
possible is really, really important. [P15]

This is the confusing thing that we were talking about recently is that it posts 
the pull requests as like one of the engineers on my team. That's kind of 
confusing because like it's not always that engineer does it. [P6]

Because like, if you're expecting about if you're expecting, like an avatar, like 
someone to like, interact like a human and then it doesn't I think that's very, 
that's confusing and like, sets you up for bad expectations. [P6]

Expectation breakdowns

Bots can enforce inflexible 
rules

Bots can enforce inflexible rules 
imposed by a community P3, P7, P15, P17

The social issues are largely down to about being inflexible and not meeting 
somebody's expectations. [P7]

Um, and I've seen a lot of people have problems with that because they say, 
why is this bot closing my issue that I, you know, so painstakingly opened? 
And, you know, I shared my thoughts, why is this bot coming along and just, 
you know, closing my work. [P17]

It's not flexible enough and then that combined with our linting and testing 
suite is too strict. So the biggest complaints we've gotten are that our lint rules 
and test rule tests are too strict. And of course the bot enforces that. So they'll 
say things like, wow, the bot is strict. Like, yeah, that's because it's all just 
doing this thing. “Did you pass the tests? Yes, no.” The tests are very strict. 
So definitely, we've had complaints of saying, “Wow, it's hard to get.” It's hard 
to get a PR from start to finish to pass all the tests and get the bot to accept it. 
[P7]
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Expectation breakdowns

For some developers is strange 
interacting with a bot

Some developers do not feel 
comfortable interacting with a bot P5, P12

“Hey, I'm here to help you” is not super weird. I mean, I think for some people, 
it's still quite strange, and they're quite surprised by it. [P12]

they just say like, receiving thanks from a person is different than thanks from 
a bot. That's a social aspect....  They just, like, "it's not the same." It feels less 
sincere to them. [P5]

Bots can intimidate newcomers
Some newcomers might feel 

intimidated by bots' interactions 
and feedback

P2, P12, P17

It can be intimidating, especially if it's the first time you're contributing. [P2]

I think there's also, you know, new contributors, I mean to an open source 
project, interacting with the bot that they've never seen or heard of before, that 
can be really confusing. And you know, that can be difficult for or intimidating 
for open source contributors. [P17]

because it's not obvious what's happening like I think if you're new to a project 
then You don't … you might not be expecting bots, Righ? So I think it's, I think 
it's a sort of ... Yeah, if you don't know to expect it, then that could be 
confusing. [P12]

Bot communication issues

Bots do not contextualize their 
actions

Bots do not understand the 
context of what they are doing P4

Communication is hard, right? You know, a bot is doing a job and it has to 
communicate something, whether it's that you have a typo and trying to fix the 
typo, or your test doesn't pass. It doesn't tell you it. A human can be like, it's 
not passing because we change this and all these things happen. They don't 
understand. Let me see... It doesn't understand the context of why 
something's wrong. You know, a typo. [P4]

Non-comprehensive feedback The feedback provided might be 
unclear, or even poor P4, P15, P17 Well, you know, something that will comment with information that's unclear. 

And then you then need to go and like ask a human for clarity. [P17]

Bots do not provide actionable 
changes

The feedback provided by bots 
are not actionable P8, P9

It's great to see yes or no, but if it's not actionable, then it's not useful for you. 
[P8]

If the answer is like, “Hey, you decreased coverage,” or like “you didn't meet 
some standard.” How can you go about fixing it and these are like where you 
should look first. And so being able to provide that I think is extremely 
important. [P8]

Interacting with the bot requires 
previous knowledge

Understanding the bot requires 
other technical knowledge not 

related to the bot
P2, P5, P6, P12

I've seen it even in maybe it's my own bot... people did not know how the auto 
merging works. But they misuse [the bot]... so allowed it to do is... just write 
the email to the mailing list saying “this is how it works.” [P5]

And then so they maybe do a bit more … but basically, some people fail to 
understand the review process and then also can get frustrated with all the 
[bot] notifications. [P12]

Bots being intrusive
Spamming Some bots are designed to 

spamming repositories P4, P13, P16

I didn't give [to the bot] explicit authorization to enter the repository, it 
generates a notification that you did not request, which is the pull request. 
[P16]

[...] people want to have agency, they want to have choice. [...] They want to 
know that they are being corrected because they asked to be corrected. So 
when I asked for you to do code coverage, and you tell me I'm failing my code 
coverage, I asked for that.[P4]

Modifying commits/pull 
requests

Some bots can be intrusive, 
modifying commits and pull 
requests created by humans

P7, P21
let's say you have a very large line of code and the bot goes there and breaks 
that line for you. It is intrusive because it is changing what the developers did. 
[P21]

112

APPENDIX B



113

Appendix C

Supplementary Material for
Chapter 5

In this appendix, we present the complementary material to replicate the method
available in Chapter 5. For more details, refer to our Zenodo repository.1

C.1 Design Fiction Guide
Starting the session

• Remembering the terms of the consent form.

• Explaining research objectives.

• Asking permission for recording.

• Sending the link to the �ctional story [animated video].

How should the super bot act in the following situations? Please, detail your an-
swers as much as possible.

• When a newcomer submits a contribution to an open-source project.

• When a core developer is working on a priority task. (when a core developer works
on something and doesn’t want to get interrupted)

• When one or more bots are in�ating the pull requests with repetitive or verbose
information.

• When a bot performs an unsolicited action on a pull request because of a bug or
spam.

1 https://zenodo.org/record/5428540

https://zenodo.org/record/5428540
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Followed by (if needed):

• What is the most important feature in this case?

• What should this super bot not do in this case?

• How do you think the super bot would manage the action and information generated
by other bots?

Wrap-up questions:

• What else do you think the super bot will be capable of doing to avoid the noise?
Give an example.

C.2 Code Book – Designed Strategies



Code Description Participants who 
mentioned Examples

Information management

Prioritization based on tasks
The super bot presents the most important bots 
comments based on the task implemented by 
the developer.

P2, P6, P7, P8, P10, P13, 
P22, P24, P27

"“it would also be able to sort of filter out what's useful 
and what's not useful based on that task the developer 
is actually working on." [P10]

Prioritization based on issues The super bot should display the critical bot 
notifications, including errors and failures.

P2, P13, P15, P18, P21, P23, 
P24

"if any critical problem happens, then I would like to be 
notified with a specific bot report, I would receive a 
critical notification." [P21]

Summarization of bot comments The super bot summaries bots outputs into a 
single comment on a pull request.

P4, P6, P7, P10, P18, P24, 
P26, P28, P29, P31, P32

"It is difficult to summarize, right? Because, although 
the message is created by a bot, it's supposedly based 
on a template." [P31]

"Give me a context report or summary. I expect the 
Super bot to be just one particular comment with some 
points. Just one comment with everything as a 
conscious report." [P26]

Categorization of bot comments The super bot groups the bot comments based 
on their types (e.g., testing, security). P9, P23, P27, P30, P31

" I would categorize the events by type, if it's everything 
related to coveralls, everything related to license, 
everything related to vulnerabilities updated versions 
that we can have a clear vision, because the developer 
will know what is the priority of each task and wil know 
if it needs to look at it or not." [P27]

Aggregating bot comments The super bot merges bots outputs into a single 
comment on a pull request.

P4, P8, P10, P14, P15, P16, 
P24, P30, P32

I mean, the simplest way is just to put them together, 
but I don't think it's that easy.” [P4]

Keep the most recent information
The super bot creates a comment and  keeps 
updating the comment with new information 
from other bots to avoid inflating the pull 
requests and issues with many comments.

P2, P7, P8, P16, P23, P25, 
P27

"the super bot just creates one comment and keeps 
updating it for example.” [P16]

Interacting with users through natural 
language

The super bot would provide an interface for 
communicating with developers in order to 
understand their requests and answer their 
questions.

P2, P5, P18, P26

"So in that case, I expect the super bot to be actively 
involved in the discussion, and not some automated 
script, which just executes one out of the pre-listed 
responses." [P26]

Internationalization The super bot supports different languages (e.g. 
German) P1, P22

"“The language itself could be English or maybe the 
language you set up on GitHub if there is a feature to 
say “I'm from Germany. So I want the UI to be in 
German” than the super bot could use this information 
and provide German messages.” [P1]

Platform support

Separating bot comments
The GitHub should display bot comments in 
another panel/session of the pull request 
interface.

P2, P5, P7, P16, P17, P19, 
P25, P26, P27, P31, P32

“So I would create another thread for automatic 
messages. In the pull request, the interface would be 
able to split the conversation. It would eliminate the 
problem of typing in the middle of the conversation.” 
[P17]

"developers do not like bots to come in the middle of 
their conversations. So, bots having their own space or 
their own channel would be the best." [P32]

Bots configuration dashboard
The GitHub would provide a way to access a 
dashboard that is customizable to the 
developers needs that could depend on the 
developers role in the project.

P3, P7, P11, P17
"you end up with tons of repositories and if bots are 
working on it, you need some overview picture of it." 
[P3]

Newcomers' assistance

Welcoming message
The super bot welcomes the newcomers by 
posting a comment, for example "Hi, this is your 
first contribution. Welcome abroad!"

P2, P10, P15, P20, P21, P23, 
P24, P25

“as soon as possible you will receive the message “Hi, 
welcome! I just saw this is your first contribution. Are 
you aware of the rules of this repository?” or “the rules 
of this community”. [P2]

"to let them know that they're welcome into this 
community." [P10]

Explaining rules, instructions, and 
requirements

The super bot should guide the newcomers and 
inform them about the projects rules and the 
requirement to approve the PR.

P2, P6, P13, P14, P15, P20, 
P21, P23

"[the newcomer] do not understand the rules yet and 
[the newcomer] don't understand which rules are 
important." [P13]

"the super bot would do an excellent job for a 
newcomer by explaining why these rules exist." [P13]

Provide information interactively The super bot provides information one at a time 
and communicates with users. P5, P8, P9, P20, P21

"super bot could do what chatbots do today: guide the 
new contributor. So, kind of step by step to guide the 
newcomer" [P5]

Newcomers pull request notification The super bot notifies expert developers about a 
newcomer's contribution. P1, P6, P8

“[...] and maybe also ping a developer to look at it 
because it's a new contributor.” [P1]

Notification management

Schedule bot notifications
The super bot would not notify developers on 
the predefined times they have configured the 
bot to not interrupt them with notifications (e.g. 
“do not disturb” mode).

P2, P5, P7, P8, P12, P25, 
P27

"I was wondering if we could try to create some kind of 
interface for the level of availability of the interruptions." 
[P2]

Do not notify maintainers until the condition is 
satisfied

The super bot would notify the developers only 
when the predefined rules were reached. P16, P27

"I want to be notified about new pull requests after all 
my tests have passed. And after the bots commented, 
and if everything is green, then I want to be notified" 
[P16]

Notify developers in their idle
times

The super bot would not interrupt the developers 
during critical tasks. Also, the super bot has the 
ability to learn with the developers’ schedule and 
adapt to them.

P1, P5, P7, P10, P24, P26, 
P27

"You could fix this issue by not notifying the developer if 
you're aware that he is currently working. That's also 
what other humans would not do." [P1]

Notify through pre-specified channel
The super bot should send the notifications 
wherever the developer wants to receive the 
notification (e.g. email, GitHub notifications, …)

P1, P4, P5, P8, P10, P15, 
P23, P24

"I think, since it's a super bot, and some of the 
complaints are that they didn't like information overload, 
it would be useful for it to make notifications in 
whatever way the user prefers." [P10]

Notifying only interested developers
The super bot notifies the developers who are 
interested in monitoring activities related to a 
particular Repo/issue/PR.

P2, P16, P25, P27, P28

" if I'm just a contributor, hey, I want to know that 
notification about that contribution that I made to the 
project. But as a maintainer, I don't need to know, I 
don't need to be reminded again, about every 
contribution that happened when I release a new 
version of my project" [P25]

Spam and failures management

Prevent repetitive bot activities
The super bot would detect bots that are 
generating repetitive outcomes and prevent 
them from acting on pull requests and issues, in 
order to avoid duplicate messages and spam.

P1, P6, P10, P11, P24, P25, 
P26, P27

"“If it has the ability to control which bots comment 
often, then of course, it would be easy to say “no, you 
only have this one comment and I see that your next 
comment is exactly the same. I won't let you comment.” 
That would be maybe the easiest solution. I don't know 
if ... Okay, assuming that the super bot is super 
intelligent and really knows that the second comment is 
a bug. Although it is totally different, it doesn't make 
sense.” [P1]

Bugs report
The super bot would be able to create an issue 
in the smaller bots repository to report bugs with 
them.

P1, P10

"“Maybe the super bot could create a pull request or 
issue in the other bots repository and tell them “Hey, 
look here, I found the bot bugs”. Maybe that was 
something that's really cool and really futuristic. If super 
bot creates the issues on other repositories.” [P1]

Spam messages notification
The super bot would notify developers of 
repetitive bot messages that might be 
considered spam.

P1, P10, P25, P26

"“So there should be some sort of feedback for 
developers whenever they receive a bot notification or 
so this wouldn't actually be coming from super bot.” 
[P10]
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